A143239 Triangle read by rows, A126988 * A128407 as infinite lower triangular matrices.
1, 2, -1, 3, 0, -1, 4, -2, 0, 0, 5, 0, 0, 0, -1, 6, -3, -2, 0, 0, 1, 7, 0, 0, 0, 0, 0, -1, 8, -4, 0, 0, 0, 0, 0, 0, 9, 0, -3, 0, 0, 0, 0, 0, 0, 10, -5, 0, 0, -2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 14, -7, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 2, -1; 3, 0, -1; 4, -2, 0, 0; 5, 0, 0, 0, -1; 6, -3, -2, 0, 0, 1; 7, 0, 0, 0, 0, 0, -1; 8, -4, 0, 0, 0, 0, 0, 0; 9, 0, -3, 0, 0, 0, 0, 0, 0; 10, -5, 0, 0, -2, 0, 0, 0, 0, 1; 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1; 12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0; 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1; 14, -7, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1; ... Row 12 = (12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0) since (Cf. A126988 - the divisors of 12 are (12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 1) and applying mu(k) * (nonzero terms), we get (1*12, (-1)*6, (-1)*4, 1*2) sum = 4 = phi(12).
References
- Ronald L. Graham, Donald E. Knuth & Oren Patashnik, "Concrete Mathematics" 2nd ed.; Addison-Wesley, 1994, p. 137.
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A143239:= func< n,k | (n mod k) eq 0 select MoebiusMu(k)*(n/k) else 0 >; [A143239(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Sep 12 2024
-
Mathematica
A143239[n_, k_]:= If[Mod[n,k]==0, MoebiusMu[k]*(n/k), 0]; Table[A143239[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
-
SageMath
def A143239(n,k): return moebius(k)*(n//k) if (n%k)==0 else 0 flatten([[A143239(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Sep 12 2024
Comments