cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143283 Number of binary words of length n containing at least one subword 10001 and no subwords 10^{i}1 with i<3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 10, 16, 24, 35, 51, 75, 110, 160, 231, 332, 476, 681, 972, 1384, 1966, 2787, 3944, 5573, 7864, 11082, 15597, 21926, 30791, 43199, 60553, 84807, 118682, 165966, 231930, 323905, 452083, 630629, 879224, 1225205, 1706532, 2375901
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(9) = 6 because 6 binary words of length 8 have at least one subword 10001 and no subwords 11, 101 or 1001: 000010001, 000100010, 001000100, 010001000, 100010000, 100010001.
		

Crossrefs

Cf. A003269, A003520, 3rd column of A143291.

Programs

  • Maple
    a:= proc(m) local M;
          M:= Matrix (2*m+3, (i, j)-> `if` (i=j-1 and i<>m+1 or j=1 and
                      i in [1, m+1] or j=m+2 and i in [m+2, 2*m+3], 1, 0));
          proc(n) local K; K:= M^(n+m+1); K[m+1, 1] -K[m+2, m+2] end
        end(3):
    seq (a(n), n=0..55);

Formula

G.f.: x^5/((x^4+x-1)*(x^5+x-1)).
a(n) = A003269(n+4) - A003520(n+4).