A143300 Decimal expansion of the Goh-Schmutz constant.
1, 1, 1, 7, 8, 6, 4, 1, 5, 1, 1, 8, 9, 9, 4, 4, 9, 7, 3, 1, 4, 0, 4, 0, 9, 9, 6, 2, 0, 2, 6, 5, 6, 5, 4, 4, 4, 1, 6, 3, 1, 1, 5, 5, 1, 2, 0, 4, 1, 2, 8, 8, 4, 2, 6, 5, 0, 6, 2, 8, 6, 5, 1, 4, 0, 1, 6, 0, 5, 4, 5, 5, 1, 8, 4, 2, 0, 3, 8, 5, 9, 1, 8, 1, 4, 8, 8, 0, 0, 7, 3, 5, 6, 5, 0, 0, 5, 2, 7, 1, 2, 9, 1, 2, 7
Offset: 1
Examples
1.1178641511899449731...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See p. 287.
Links
- P. Erdős and P. Turán, On some problems of a statistical group theory, IV, Acta Math. Acad. Sci. Hungar. 19 (1968), pp. 413-435. [alternate link]
- William M. Y. Goh and Eric Schmutz, The expected order of a random permutation, Bulletin of the London Mathematical Society 23:1 (1991), pp. 34-42.
- Richard Stong, The average order of a permutation, Electronic Journal of Combinatorics 5 (1998), 6 pp.
- Eric Weisstein's World of Mathematics, Goh-Schmutz Constant
Programs
-
Mathematica
RealDigits[ N[ Integrate[Log[1 + t]/(E^t - 1), {t, 0, Infinity}], 105]][[1]] (* Jean-François Alcover, Oct 26 2012 *)
-
PARI
intnum(t=0,[oo,1],log(1+t)/(exp(t)-1)) \\ Charles R Greathouse IV, Nov 05 2014
Formula
From Amiram Eldar, Aug 13 2020: (Start)
Equals Integral_{x=0..oo} log(x+1)/(exp(x) - 1) dx.
Equals Integral_{x=0..oo} log(1 - log(1 - exp(-x))) dx.
Equals Integral_{x=0..oo} x*exp(-x)/((1 - exp(-x)) * (1 - log(1 - exp(-x)))) dx.
Equals -Sum_{k>=1} exp(k) * Ei(-k)/k, where Ei is the exponential integral. (End)
Comments