A143327 Table T(n,k) by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary words (n,k >= 1) with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 11, 1, 1, 5, 19, 35, 26, 1, 1, 6, 29, 79, 115, 53, 1, 1, 7, 41, 149, 334, 347, 116, 1, 1, 8, 55, 251, 773, 1339, 1075, 236, 1, 1, 9, 71, 391, 1546, 3869, 5434, 3235, 488, 1, 1, 10, 89, 575, 2791, 9281, 19493, 21754, 9787, 983, 1, 1, 11
Offset: 1
Examples
T(3,3) = 11, because 11 words of length <=3 over 3-letter alphabet {a,b,c} are primitive and earlier than others derived by cyclic shifts of the alphabet: a, ab, ac, aab, aac, aba, abb, abc, aca, acb, acc. Table begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 5, 11, 19, 29, 41, 55, 71, ... 1, 11, 35, 79, 149, 251, 391, 575, ... 1, 26, 115, 334, 773, 1546, 2791, 4670, ... 1, 53, 347, 1339, 3869, 9281, 19543, 37367, ... 1, 116, 1075, 5434, 19493, 55936, 137191, 299510, ... 1, 236, 3235, 21754, 97493, 335656, 960391, 2396150, ...
Links
Crossrefs
Programs
-
Maple
with(numtheory): f1:= proc (n) option remember; unapply(k^(n-1) -add(f1(d)(k), d=divisors(n) minus {n}), k) end: g1:= proc(n) option remember; unapply(add(f1(j)(x), j=1..n), x) end: T:= (n, k)-> g1(n)(k): seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
t[n_, k_] := Sum[k^(d-1)*MoebiusMu[j/d], {j, 1, n}, {d, Divisors[j]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 13 2013 *)
Comments