A143555
G.f. satisfies: A(x) = 1 + x*A(x)^2/A(-x)^2.
Original entry on oeis.org
1, 1, 4, 8, 28, 80, 308, 984, 3980, 13472, 56164, 197032, 838396, 3013872, 13015188, 47624568, 207971436, 771336512, 3397886660, 12736715592, 56502898140, 213618833808, 953139545076, 3629043226392, 16270547827020, 62317467147744
Offset: 0
G.f. A(x) = 1 + x + 4*x^2 + 8*x^3 + 28*x^4 + 80*x^5 + 308*x^6 +...
A(x)/A(-x) = 1 + 2*x + 2*x^2 + 10*x^3 + 18*x^4 + 98*x^5 + 210*x^6 +...
where 1 - (1+x^2)/A(x) = x*A(x)/A(-x).
Related expansions:
A(x)^2/A(-x)^2 = 1 + 4*x + 8*x^2 + 28*x^3 + 80*x^4 + 308*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 24*x^3 + 88*x^4 + 280*x^5 + 1064*x^6 +...
where A(x)^2/A(-x)^2 = A(x)^2 + x + x*A(-x).
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^2/subst(A^2,x,-x));polcoeff(A,n)}
A212527
G.f. satisfies: A(x) = 1 + x*A(x)^2 / (A(I*x) * A(-I*x)).
Original entry on oeis.org
1, 1, 2, 8, 26, 56, 194, 832, 2866, 7904, 30690, 137000, 497706, 1491512, 6041602, 27557184, 102985186, 321675648, 1333006018, 6160815624, 23426000186, 75016874488, 315357132994, 1470462300160, 5656904907026, 18419315779552, 78201118018466, 366962271138472
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 26*x^4 + 56*x^5 + 194*x^6 + 832*x^7 +...
Related expansions begin:
A(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 72*x^4 + 196*x^5 + 668*x^6 + 2692*x^7 +...
A(I*x)*A(-I*x) = 1 - 3*x^2 + 40*x^4 - 316*x^6 + 4624*x^8 - 50676*x^10 + 811192*x^12 -+...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*A^2/(subst(A,x,I*x+x*O(x^n))*subst(A,x,-I*x+x*O(x^n))));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A216713
G.f.: A(x) = 1 + x*A(x)^2 / ( A(w*x)*A(w^2*x) ), where w = exp(2*Pi*I/3).
Original entry on oeis.org
1, 1, 3, 12, 27, 105, 420, 1242, 5295, 22395, 72738, 323268, 1410684, 4806675, 21881721, 97371786, 341608239, 1579726122, 7123796790, 25489388367, 119184247992, 542664427242, 1969440159591, 9284827569117, 42584603672868, 156213604844883, 741154831030785
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 27*x^4 + 105*x^5 + 420*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 87*x^4 + 336*x^5 + 1356*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 189*x^4 + 756*x^5 + 3132*x^6 +...
Let w = exp(2*Pi*I/3), then A(x) = 1 + x*A(x)^3/(A(x)*A(w*x)*A(w^2*x)) where
A(x)*A(w*x)*A(w^2*x) = 1 + 28*x^3 + 1134*x^6 + 61857*x^9 + 3929121*x^12 + 272388420*x^15 + 19981576476*x^18 + 1524888581787*x^21 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n+1,A=1+x*A^3*exp(-3*sum(m=1,n\3,x^(3*m)*polcoeff(log(A),3*m))+x*O(x^n)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A143562
G.f. satisfies: A(x) = 1 + x*A(x)^3/A(-x)^2.
Original entry on oeis.org
1, 1, 5, 17, 105, 481, 3261, 16801, 119697, 656129, 4819061, 27447601, 205776121, 1202943457, 9152680109, 54524185409, 419491297313, 2534963932417, 19673179986661, 120224135048273, 939543098579081, 5793676726569697
Offset: 0
G.f. A(x) = 1 + x + 5*x^2 + 17*x^3 + 105*x^4 + 481*x^5 + 3261*x^6 +...
A(x)*A(-x) = 1 + 9*x^2 + 201*x^4 + 6321*x^6 + 233073*x^8 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*A^3/subst(A^2,x,-x));polcoeff(A,n)}
A216712
G.f.: A(x) = 1 + x*A(x)^3 / ( A(-x)*A(I*x)*A(-I*x) ), where I^2 = -1.
Original entry on oeis.org
1, 1, 4, 22, 140, 514, 3444, 23790, 165932, 774610, 5767268, 42526198, 310791884, 1574532626, 12230311188, 92980917006, 696528653740, 3677761305954, 29231321098692, 226211978983190, 1720430261953036, 9313977313216354, 75106192841523892, 588010633850768622
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 514*x^5 + 3444*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 1484*x^5 + 9520*x^6 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 3024*x^5 + 19240*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 5264*x^5 + 33800*x^6 +...
A(x)*A(-x) = 1 + 7*x^2 + 252*x^4 + 6496*x^6 + 308820*x^8 + 10966136*x^10 + 582452652*x^12 + 23322250960*x^14 + 1309365750212*x^16 +...
Note that A(x) = 1 + x*A(x)^4/(A(x)*A(-x)*A(I*x)*A(-I*x)) where
A(x)*A(-x)*A(I*x)*A(-I*x) = 1 + 455*x^4 + 590200*x^8 + 1124826664*x^12 + 2538673877080*x^16 + 6294363022919816*x^20 + 16568529053651321656*x^24 +...
Note also that a bisection of 1/A(x)^3 equals a bisection of 1/A(x)^4:
1/A(x)^3 = 1 - 3*x - 6*x^2 - 28*x^3 - 165*x^4 + 273*x^5 - 2292*x^6 +...
1/A(x)^4 = 1 - 4*x - 6*x^2 - 28*x^3 - 165*x^4 + 728*x^5 - 2292*x^6 +...
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n,A=1+x*A^3/(subst(A,x,-x)*subst(A,x,I*x)*subst(A,x,-I*x)));polcoeff(A, n)}
-
{a(n)=local(A=1+x*O(x^n));for(i=1,n+1,A=1+x*A^4*exp(-4*sum(m=1,n\4,x^(4*m)*polcoeff(log(A),4*m))+x*O(x^n)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A143340
G.f. satisfies: A(x) = 1 + x*A(x)^3/A(-x).
Original entry on oeis.org
1, 1, 4, 15, 84, 402, 2520, 13339, 88484, 494814, 3395816, 19657398, 137999048, 818024484, 5836517808, 35201610387, 254231733188, 1553691459558, 11327637588552, 69948932919906, 513856752260184, 3199802098978428
Offset: 0
A bisection of g.f. A(x) equals a bisection of A(x)^3:
A(x) = 1 + x + 4*x^2 + 15*x^3 + 84*x^4 + 402*x^5 + 2520*x^6 + 13339*x^7 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 70*x^3 + 402*x^4 + 2163*x^5 + 13339*x^6 +...
so that A(x) - x*A(x)^3 = 1 + x^2*[A(x)*A(-x)]^2, where
[A(x)*A(-x)]^2 = 1 + 14*x^2 + 357*x^4 + 11522*x^6 + 420170*x^8 +...
A(x)*A(-x) = 1 + 7*x^2 + 154*x^4 + 4683*x^6 + 165446*x^8 +...
Related expressions.
A(x) = 1 + x*A(x)^2/A(-x) + x^2*A(x)^4/A(-x)^2 + x^3*A(x)^6/A(-x)^3 +...
log(A(x)) = x*A(x)^2/A(-x) + x^2/2*A(x)^4/A(-x)^2*x^2 + x^3/3*A(x)^6/A(-x)^3 +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*A^3/subst(A,x,-x));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(m=0,n,x^m*A^(2*m)/subst(A^m,x,-x+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,A^(2*m)*subst(A^-m,x,-x)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
A143341
G.f. satisfies: A(x) = 1 + x*A(x)^4/A(-x).
Original entry on oeis.org
1, 1, 5, 26, 195, 1303, 11076, 81910, 740151, 5782175, 54176573, 438029432, 4203769940, 34798104500, 339699218160, 2860590892318, 28283147265023, 241296800029199, 2409437282086511, 20767852798378330, 209017295575667771
Offset: 0
A bisection of g.f. A(x) equals a bisection of A(x)^4:
A(x) = 1 + x + 5*x^2 + 26*x^3 + 195*x^4 + 1303*x^5 + 11076*x^6 + 81910*x^7 +...
A(x)^4 = 1 + 4*x + 26*x^2 + 168*x^3 + 1303*x^4 + 9744*x^5 + 81910*x^6 +...
so that A(x) - x*A(x)^4 = 1 + x^2*[A(x)*A(-x)]^3, where
[A(x)*A(-x)]^3 = 1 + 27*x^2 + 1332*x^4 + 82791*x^6 + 5800329*x^8 +...
A(x)*A(-x) = 1 + 9*x^2 + 363*x^4 + 20820*x^6 + 1397511*x^8 +...
Related expressions.
A(x) = 1 + x*A(x)^3/A(-x) + x^2*A(x)^6/A(-x)^2 + x^3*A(x)^9/A(-x)^3 +...
log(A(x)) = x*A(x)^3/A(-x) + x^2/2*A(x)^6/A(-x)^2*x^2 + x^3/3*A(x)^9/A(-x)^3 +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*A^4/subst(A,x,-x));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(m=0,n,x^m*A^(3*m)/subst(A^m,x,-x+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,A^(3*m)*subst(A^-m,x,-x)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
A143342
G.f. satisfies: A(x) = 1 + x*A(x)^5/A(-x).
Original entry on oeis.org
1, 1, 6, 40, 374, 3215, 34298, 326360, 3710278, 37289620, 440121880, 4577214736, 55375589594, 589530372890, 7258264793564, 78597770766160, 980423896907046, 10754940952651740, 135521929778850952, 1501817992511869280
Offset: 0
A bisection of g.f. A(x) equals a bisection of A(x)^5:
A(x) = 1 + x + 6*x^2 + 40*x^3 + 374*x^4 + 3215*x^5 + 34298*x^6 + 326360*x^7 +...
A(x)^5 = 1 + 5*x + 40*x^2 + 330*x^3 + 3215*x^4 + 30756*x^5 + 326360*x^6 +...
so that A(x) - x*A(x)^5 = 1 + x^2*[A(x)*A(-x)]^4, where
[A(x)*A(-x)]^4 = 1 + 44*x^2 + 3542*x^4 + 358468*x^6 + 40846025*x^8 + +...
A(x)*A(-x) = 1 + 11*x^2 + 704*x^4 + 65054*x^6 + 7062088*x^8 +...
Related expressions.
A(x) = 1 + x*A(x)^4/A(-x) + x^2*A(x)^8/A(-x)^2 + x^3*A(x)^12/A(-x)^3 +...
log(A(x)) = x*A(x)^4/A(-x) + x^2/2*A(x)^8/A(-x)^2*x^2 + x^3/3*A(x)^12/A(-x)^3 +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*A^5/subst(A,x,-x));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=sum(m=0,n,x^m*A^(4*m)/subst(A^m,x,-x+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,A^(4*m)*subst(A^-m,x,-x)*x^m/m)+x*O(x^n)));polcoeff(A,n)}
Showing 1-8 of 8 results.
Comments