cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143343 Triangle T(n,k) (n>=0, 1<=k<=n+1) read by rows: T(n,1)=1 for n>=0, T(1,2)=2. If n>=3 is odd then T(n,k)=1 for all k. If n>=3 is even then if k is prime and k-1 divides n then T(n,k)=k, otherwise T(n,k)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gary W. Adamson & Mats Granvik, Aug 09 2008

Keywords

Comments

By the von Stadt-Clausen theorem, the product of the terms in row n is the denominator of the Bernoulli number B_n.

Examples

			The triangle begins:
1,
1,2,
1,2,3,
1,1,1,1,
1,2,3,1,5,
1,1,1,1,1,1,
1,2,3,1,1,1,7,
1,1,1,1,1,1,1,1,
1,2,3,1,5,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
1,2,3,1,1,1,1,1,1,1,11,
1,1,1,1,1,1,1,1,1,1,1,1,
1,2,3,1,5,1,7,1,1,1,1,1,13,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,
...
		

References

  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1.

Crossrefs

Extensions

Entry revised by N. J. A. Sloane, Aug 10 2019