A143381 Number of Hi-Lo arrangements HL(m,n) of a deck with n suits and m ranks in each suit, m>=1, n>=1.
0, 2, 0, 6, 2, 0, 14, 30, 2, 0, 78, 230, 174, 2, 0, 230, 14094, 4834, 1092, 2, 0, 1902, 187106, 3785126, 114442, 7188, 2, 0, 6902, 26185806, 250560122, 1225289412, 2908990, 48852, 2, 0, 76110, 557115782, 682502468094, 423419180642
Offset: 1
Examples
The table of values HL(m,n) starts: 0 0 0 0 0 0 0 ... 2 2 2 2 2 2 2 ... 6 30 174 1092 7188 48852 339720 ... 14 230 4834 114442 2908990 77538470 2138286650 ... 78 14094 3785126 1225289412 442227602892 171398421245988 69859403814893544 ... ...
Links
- Max Alekseyev, PARI scripts for various problems
- Kipli's Cage: Enumerating HiLo arrangements (the definition there has some glitches - see correct version in this entry).
Programs
-
PARI
\r nseqadj.gp { f(m,n,k) = sum(j=0, k, (-1)^j * binomial(k,j) * binomial(k-j,n)^m ) } { HL0(m,n) = 2 * sum(k=n, (m/2)*n, f(m/2,n,k) * (f(m/2,n,k) + f(m/2,n,k+1)) ) } \\ for even m { HL1(m,n) = sum(i=n, (m\2)*n, f(m\2,n,i) * sum(j=n, (m\2)*n, f(m\2,n,j) * M([n,i,j]) )) } \\ for odd m { HL(m,n) = if(m%2, HL1(m,n), HL0(m,n) ) }
Comments