A143453 Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.
1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0
Examples
A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 3, 3, 3, 3, 3, 3, 3, 3, ... 9, 5, 5, 5, 5, 5, 5, 5, ... 27, 11, 7, 7, 7, 7, 7, 7, ... 81, 21, 13, 9, 9, 9, 9, 9, ... 243, 43, 23, 15, 11, 11, 11, 11, ... 729, 85, 37, 25, 17, 13, 13, 13, ... 2187, 171, 63, 39, 27, 19, 15, 15, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
-
Mathematica
a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)
Formula
G.f. of column k: 1/(x^k*(1-x-2*x^(k+1))).
A(n,k) = 3^n if k=0, else A(n,k) = 2*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 2*A(n-k-1,k).