cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143453 Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 3, 9, 1, 3, 5, 27, 1, 3, 5, 11, 81, 1, 3, 5, 7, 21, 243, 1, 3, 5, 7, 13, 43, 729, 1, 3, 5, 7, 9, 23, 85, 2187, 1, 3, 5, 7, 9, 15, 37, 171, 6561, 1, 3, 5, 7, 9, 11, 25, 63, 341, 19683, 1, 3, 5, 7, 9, 11, 17, 39, 109, 683, 59049, 1, 3, 5, 7, 9, 11, 13, 27, 57, 183, 1365, 177147
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2008

Keywords

Examples

			A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
Square array A(n,k) begins:
     1,   1,  1,  1,  1,  1,  1,  1, ...
     3,   3,  3,  3,  3,  3,  3,  3, ...
     9,   5,  5,  5,  5,  5,  5,  5, ...
    27,  11,  7,  7,  7,  7,  7,  7, ...
    81,  21, 13,  9,  9,  9,  9,  9, ...
   243,  43, 23, 15, 11, 11, 11, 11, ...
   729,  85, 37, 25, 17, 13, 13, 13, ...
  2187, 171, 63, 39, 27, 19, 15, 15, ...
		

Crossrefs

Column k=0: A000244, k=1: A001045(n+2), k=2: A003229(n+1) and A077949(n+2), k=3: A052942(n+3), k=4: A143447, k=5: A143448, k=6: A143449, k=7: A143450, k=8: A143451, k=9: A143452.
Diagonal: A005408.

Programs

  • Maple
    A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
  • Mathematica
    a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

G.f. of column k: 1/(x^k*(1-x-2*x^(k+1))).
A(n,k) = 3^n if k=0, else A(n,k) = 2*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 2*A(n-k-1,k).