A143499 Triangle of unsigned 4-Lah numbers.
1, 8, 1, 72, 18, 1, 720, 270, 30, 1, 7920, 3960, 660, 44, 1, 95040, 59400, 13200, 1320, 60, 1, 1235520, 926640, 257400, 34320, 2340, 78, 1, 17297280, 15135120, 5045040, 840840, 76440, 3822, 98, 1, 259459200, 259459200, 100900800, 20180160, 2293200
Offset: 4
Examples
Triangle begins n\k|......4......5......6......7......8......9 ============================================== 4..|......1 5..|......8......1 6..|.....72.....18......1 7..|....720....270.....30......1 8..|...7920...3960....660.....44......1 9..|..95040..59400..13200...1320.....60......1 ... T(5,4) = 8. The partitions of {1,2,3,4,5} into 4 ordered lists, such that the elements 1, 2, 3 and 4 lie in different lists, are: {1}{2}{3}{4,5} and {1}{2}{3}{5,4}, {1}{2}{4}{3,5} and {1}{2}{4}{5,3}, {1}{3}{4}{2,5} and {1}{3}{4}{5,2}, {2}{3}{4}{1,5} and {2}{3}{4}{5,1}.
Links
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- G. Nyul, G. Rácz, The r-Lah numbers, Discrete Mathematics, 338 (2015), 1660-1666.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014
Crossrefs
Programs
-
Maple
with combinat: T := (n, k) -> (n-4)!/(k-4)!*binomial(n+3,k+3): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;
-
Mathematica
T[n_, k_] := (n-4)!/(k-4)!*Binomial[n+3, k+3]; Table[T[n, k], {n, 4, 10}, {k, 4, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)
Formula
T(n,k) = (n-4)!/(k-4)!*binomial(n+3,k+3), n,k >= 4.
Recurrence: T(n,k) = (n+k-1)*T(n-1,k) + T(n-1,k-1) for n,k >= 4, with the boundary conditions: T(n,k) = 0 if n < 4 or k < 4; T(4,4) = 1.
E.g.f. for column k: Sum_{n >= k} T(n,k)*t^n/(n-4)! = 1/(k-4)!*t^k/(1-t)^(k+4) for k >= 4.
E.g.f: Sum_{n = 4..inf} Sum_{k = 4..n} T(n,k)*x^k*t^n/(n-4)! = (x*t)^4/(1-t)^8*exp(x*t/(1-t)) = (x*t)^4*(1 + (8+x)*t +(72+18*x+x^2)*t^2/2! + ...).
Generalized Lah identity: (x+7)*(x+8)*...*(x+n+2) = Sum_{k = 4..n} T(n,k)*(x-1)*(x-2)*...*(x-k+4).
The polynomials 1/n!*Sum_{k = 4..n+4} T(n+4,k)*(-x)^(k-4) for n >= 0 are the generalized Laguerre polynomials Laguerre(n,7,x).
Comments