cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143503 Numerators in the asymptotic expansion of Gamma(x+1/2)/Gamma(x).

Original entry on oeis.org

1, -1, 1, 5, -21, -399, 869, 39325, -334477, -28717403, 59697183, 8400372435, -34429291905, -7199255611995, 14631594576045, 4251206967062925, -68787420596367165, -26475975382085110035, 53392138323683746235, 26275374869163335461975, -105772979046693606062363
Offset: 1

Views

Author

Eric W. Weisstein, Aug 20 2008

Keywords

Examples

			1/sqrt(x^(-1)) - sqrt(x^(-1))/8 + (x^(-1))^(3/2)/128 + (5*(x^(-1))^(5/2))/1024 - (21*(x^(-1))^(7/2))/32768 + ...
		

Crossrefs

Cf. A061549, A088802 (denominators), A222411, A222412.

Programs

  • Maple
    H := proc(n) local S, i; S := (x/(exp(x)-1))^(3/2)*exp(x/2);
    -pochhammer(1/2,n-1)*coeff(series(S,x,n+2),x,n)*2^(4*n-1-add(i,i= convert(n,base,2))) end:
    A143503 := n -> (-1)^irem(n-1,6)*H(n-1);
    seq(A143503(n), n=1..16); # Peter Luschny, Apr 05 2014
  • Mathematica
    Numerator[CoefficientList[Series[Gamma[x + 1/2]/Gamma[x]/Sqrt[x], {x, Infinity, 20}], 1/x]] (* Vaclav Kotesovec, Oct 09 2023 *)

Extensions

More terms from Vaclav Kotesovec, Oct 09 2023