A143577 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 9.
73, 97, 233, 277, 349, 353, 613, 821, 877, 1073, 1181, 1189, 1277, 1285, 1313, 1385, 1613, 1637, 1693, 1745, 1865, 2357, 2581, 2777, 3233, 3557, 3989, 4157, 4469, 4517, 4553, 4709, 4889, 4925, 4933, 5245, 5261, 5305, 5597, 6113, 6205, 6253, 7213, 7585, 7837, 8885
Offset: 1
Keywords
Examples
a(1) = 73 because continued fraction of (1+sqrt(73))/2 = 4, 1, 3, 2, 1, 1, 2, 3, 1, 7, 1, 3, 2, 1, 1, 2, 3, 1, 7, 1, 3, 2, 1, 1, 2, 3, 1, 7, 1, 3, ... has period (1, 3, 2, 1, 1, 2, 3, 1, 7) length 9 .
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA143577 := proc(k) local c; try c := numtheory[cfrac](1/2+sqrt(k)/2,'periodic','quotients') ; if nops(c[2]) = 9 then RETURN(true) ; else RETURN(false) ; fi; catch: RETURN(false) ; end try; end: for k from 2 to 80000 do if isA143577(k) then printf("%d, ",k) ; fi; od: # R. J. Mathar, Nov 05 2008
-
Mathematica
Select[Range[1000], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 9 &] (* Amiram Eldar, Mar 19 2020 *)
Extensions
Extended by R. J. Mathar, Nov 05 2008
More terms from Amiram Eldar, Mar 19 2020
Comments