cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143577 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 9.

Original entry on oeis.org

73, 97, 233, 277, 349, 353, 613, 821, 877, 1073, 1181, 1189, 1277, 1285, 1313, 1385, 1613, 1637, 1693, 1745, 1865, 2357, 2581, 2777, 3233, 3557, 3989, 4157, 4469, 4517, 4553, 4709, 4889, 4925, 4933, 5245, 5261, 5305, 5597, 6113, 6205, 6253, 7213, 7585, 7837, 8885
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146354.
Superset of A146354. - R. J. Mathar, Nov 05 2008

Examples

			a(1) = 73 because continued fraction of (1+sqrt(73))/2 = 4, 1, 3, 2, 1, 1, 2, 3, 1, 7, 1, 3, 2, 1, 1, 2, 3, 1, 7, 1, 3, 2, 1, 1, 2, 3, 1, 7, 1, 3, ... has period (1, 3, 2, 1, 1, 2, 3, 1, 7) length 9 .
		

Crossrefs

Programs

  • Maple
    isA143577 := proc(k) local c; try c := numtheory[cfrac](1/2+sqrt(k)/2,'periodic','quotients') ; if nops(c[2]) = 9 then RETURN(true) ; else RETURN(false) ; fi; catch: RETURN(false) ; end try; end: for k from 2 to 80000 do if isA143577(k) then printf("%d, ",k) ; fi; od: # R. J. Mathar, Nov 05 2008
  • Mathematica
    Select[Range[1000], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 9 &]  (* Amiram Eldar, Mar 19 2020 *)

Extensions

Extended by R. J. Mathar, Nov 05 2008
More terms from Amiram Eldar, Mar 19 2020