cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143583 Apéry-like numbers: a(n) = (1/C(2n,n))*Sum_{k=0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).

Original entry on oeis.org

1, 12, 164, 2352, 34596, 516912, 7806224, 118803648, 1818757924, 27972399792, 431824158864, 6686855325888, 103814819552016, 1615296581684928, 25180747436810304, 393189646497706752, 6148451986328464164, 96269310864931432368, 1509065592479205772304
Offset: 0

Views

Author

Peter Bala, Aug 25 2008

Keywords

Comments

These numbers bear some analogy to the Apéry numbers A005258. They appear in the evaluation of the spectral zeta function of the non-commutative harmonic oscillator zeta_Q(s) at s = 2 and satisfy a recurrence relation similar to the one satisfied by the Apéry numbers.

Examples

			G.f. = 1 + 12*x + 164*x^2 + 2352*x^3 + 34596*x^4 + 516912*x^5 + ...
		

Crossrefs

Cf. A005258.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Maple
    a := n -> 1/binomial(2*n, n)*add(binomial(2*k, k)*binomial(4*k, 2*k)*binomial(2*n-2*k, n-k)*binomial(4*n-4*k, 2*n-2*k), k = 0..n): seq(a(n), n = 0..25);
    series( 2*EllipticK(4*x^(1/2))/(Pi*sqrt(1-16*x)), x=0, 20); # Mark van Hoeij, Apr 06 2013
    A143583 := n -> 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1):
    seq(simplify(A143583(n)), n = 0..18); # Peter Luschny, Nov 12 2022
  • Mathematica
    Table[1/Binomial[2*n,n]*Sum[Binomial[2*k,k]*Binomial[4*k,2*k]*Binomial[2*n-2*k,n-k]*Binomial[4*n-4*k,2*n-2*k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 11 2013 *)

Formula

a(n) = (1/C(2n,n))*sum {k = 0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).
Recurrence relation:
a(0) = 1, a(1) = 12, n^2*a(n) = 4*(8*n^2-8*n+3)*a(n-1) - 256*(n-1)^2*a(n-2).
Congruences:
For odd prime p, a(m*p^r) = a(m*p^(r-1)) (mod p^r) for any m,r in N.
a(n) ~ 16^n/(Pi*sqrt(Pi*n)) * (log(n) + gamma + 6*log(2)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 11 2013
a(n) = sum {k = 0..n} 4^(n-k) C(2k,k)^2*C(2n-2k,n-k). - Tito Piezas III, Dec 12 2014
a(n) = hypergeom([1/2,1/2,n+1],[1,n+3/2],1)*2^(5*n+1)*n!/((2*n+1)!!*Pi) - G. A. Edgar, Dec 10 2016
a(n) = binomial(4*n,2*n)*hypergeom([1/4,3/4,-n,-n], [1,1/4-n,3/4-n], 1). - Peter Luschny, May 14 2020
From Peter Luschny, Nov 12 2022: (Start)
a(n) = 16^n*Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2*binomial(n, k).
a(n) = 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1). (End)