A143583 Apéry-like numbers: a(n) = (1/C(2n,n))*Sum_{k=0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).
1, 12, 164, 2352, 34596, 516912, 7806224, 118803648, 1818757924, 27972399792, 431824158864, 6686855325888, 103814819552016, 1615296581684928, 25180747436810304, 393189646497706752, 6148451986328464164, 96269310864931432368, 1509065592479205772304
Offset: 0
Examples
G.f. = 1 + 12*x + 164*x^2 + 2352*x^3 + 34596*x^4 + 516912*x^5 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- K. Kimoto and M. Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, arXiv:math/0603700 [math.NT], 2006; Kyushu J. Math. Vol. 60, 2006, 383-404.
- Ji-Cai Liu and He-Xia Ni, Supercongruences for Almkvist--Zudilin sequences, arXiv:2004.07652 [math.NT], 2020. See Gn.
- Stéphane Ouvry and Alexios Polychronakos, Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers, arXiv:2006.06445 [math-ph], 2020.
- Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020. See Gn.
- Zhi-Hong Sun, Congruences for two types of Apery-like sequences, arXiv:2005.02081 [math.NT], 2020.
Crossrefs
Cf. A005258.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Maple
a := n -> 1/binomial(2*n, n)*add(binomial(2*k, k)*binomial(4*k, 2*k)*binomial(2*n-2*k, n-k)*binomial(4*n-4*k, 2*n-2*k), k = 0..n): seq(a(n), n = 0..25); series( 2*EllipticK(4*x^(1/2))/(Pi*sqrt(1-16*x)), x=0, 20); # Mark van Hoeij, Apr 06 2013 A143583 := n -> 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1): seq(simplify(A143583(n)), n = 0..18); # Peter Luschny, Nov 12 2022
-
Mathematica
Table[1/Binomial[2*n,n]*Sum[Binomial[2*k,k]*Binomial[4*k,2*k]*Binomial[2*n-2*k,n-k]*Binomial[4*n-4*k,2*n-2*k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 11 2013 *)
Formula
a(n) = (1/C(2n,n))*sum {k = 0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).
Recurrence relation:
a(0) = 1, a(1) = 12, n^2*a(n) = 4*(8*n^2-8*n+3)*a(n-1) - 256*(n-1)^2*a(n-2).
Congruences:
For odd prime p, a(m*p^r) = a(m*p^(r-1)) (mod p^r) for any m,r in N.
a(n) ~ 16^n/(Pi*sqrt(Pi*n)) * (log(n) + gamma + 6*log(2)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 11 2013
a(n) = sum {k = 0..n} 4^(n-k) C(2k,k)^2*C(2n-2k,n-k). - Tito Piezas III, Dec 12 2014
a(n) = hypergeom([1/2,1/2,n+1],[1,n+3/2],1)*2^(5*n+1)*n!/((2*n+1)!!*Pi) - G. A. Edgar, Dec 10 2016
a(n) = binomial(4*n,2*n)*hypergeom([1/4,3/4,-n,-n], [1,1/4-n,3/4-n], 1). - Peter Luschny, May 14 2020
From Peter Luschny, Nov 12 2022: (Start)
a(n) = 16^n*Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2*binomial(n, k).
a(n) = 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1). (End)
Comments