cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143609 Numerators of the upper principal and intermediate convergents to 2^(1/2).

Original entry on oeis.org

2, 3, 10, 17, 58, 99, 338, 577, 1970, 3363, 11482, 19601, 66922, 114243, 390050, 665857, 2273378, 3880899, 13250218, 22619537, 77227930, 131836323, 450117362, 768398401, 2623476242, 4478554083, 15290740090, 26102926097, 89120964298, 152139002499
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2008

Keywords

Comments

The upper principal and intermediate convergents to 2^(1/2), beginning with
2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence;
essentially, numerators=A143609 and denominators=A084068.

Examples

			2*x + 3*x^2 + 10*x^3 + 17*x^4 + 58*x^5 + 99*x^6 + 338*x^7 + 577*x^8 + ...
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (2 + 3 x - 2 x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 30}], x] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^n), n))} /* Michael Somos, Sep 03 2013 */
    
  • PARI
    x='x+O('x^99); Vec(x*(2+3*x-2*x^2-x^3)/(1-6*x^2+x^4)) \\ Altug Alkan, Mar 27 2016

Formula

a(n) = 6 * a(n-2) - a(n-4). a(2*n) = A001541(n) if n>0. a(2*n + 1) = 2 * A001653(n + 1).- Michael Somos, Sep 03 2013
G.f.: x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4). - Michael Somos, Sep 03 2013
a(n) = (2+sqrt(2)+(-1)^n*(-2+sqrt(2)))*((-1+sqrt(2))^n+(1+sqrt(2))^n)/(4*sqrt(2)). - Colin Barker, Mar 27 2016