cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143643 Numerators of the lower principal convergents and the lower intermediate convergents to 3^(1/2).

Original entry on oeis.org

1, 3, 5, 12, 19, 45, 71, 168, 265, 627, 989, 2340, 3691, 8733, 13775, 32592, 51409, 121635, 191861, 453948, 716035, 1694157, 2672279, 6322680, 9973081, 23596563, 37220045, 88063572, 138907099, 328657725, 518408351, 1226567328, 1934726305, 4577611587, 7220496869, 17083879020, 26947261171, 63757904493, 100568547815
Offset: 1

Views

Author

Clark Kimberling, Aug 27 2008

Keywords

Comments

The lower principal and intermediate convergents to 3^(1/2), beginning with 1/1, 3/2, 5/3, 12/7, 19/11, form a strictly increasing sequence; with essentially, numerators being this sequence and denominators being A005246.
sqrt(floor(a(n)^2/3)+1) = A005246(n+1). Also see A082630. - Richard R. Forberg, Nov 14 2013
a(n) = U_n(sqrt(6),1) for n odd and a(n) = 3*U_n(sqrt(6),1) for n even, where U_n(sqrt(R),Q) denotes the Lehmer sequence with parameters R and Q. This sequence is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this sequence is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Sep 03 2019

Examples

			From _Peter Bala_, Sep 03 2019: (Start)
If p(n)/q(n) denotes the n-th convergent to the simple continued fraction alpha = [c(0); c(1), c(2), ...] then a lower semiconvergent is a rational number of the form ( p(2*n) + m*p(2*n+1) )/( q(2*n) + m*q(2*n+1) ) where 0 <= m <= c(2*n+2). The lower semiconvergents include the even-indexed convergents p(2*n)/q(2*n) and give an increasing sequence of approximations to alpha from below.
In this case the simple continued fraction expansion sqrt(3) = [1; 1, 2, 1, 2, ...] produces the sequence of convergents (p(n)/q(n))n>=0 = [1/1, 2/1, 5/3, 7/4, 19/11, 26,15, 71/41, ...].
Thus the increasing sequence of lower semiconvergents begins 1/1, (1 + 2)/(1 + 1) = 3/2, (1 + 2*2)/(1 + 2*1) = 5/3, (5 + 7)/(3 + 4) = 12/7, (5 + 2*7)/(3 + 2*4) = 19/11, ... with numerators 1, 3, 5, 12, 19, .... (End)
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • Clark Kimberling, "Best lower and upper approximates to irrational numbers," Elemente der Mathematik, 52 (1997) 122-126.

Crossrefs

Formula

a(n) = 4*a(n-2)-a(n-4). G.f.: x*(1+3*x+x^2)/(1-4*x^2+x^4). - Colin Barker, Apr 28 2012