A143656 Triangle T(n, k) = A045545(k) if gcd(n,k) = 1, 0 otherwise, read by rows.
1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 2, 3, 0, 1, 0, 0, 0, 7, 0, 1, 1, 2, 3, 7, 8, 0, 1, 0, 2, 0, 7, 0, 22, 0, 1, 1, 0, 3, 7, 0, 22, 32, 0, 1, 0, 2, 0, 0, 0, 22, 0, 66, 0, 1, 1, 2, 3, 7, 8, 22, 32, 66, 91, 0, 1, 0, 0, 0, 7, 0, 22, 0, 0, 0, 233, 0, 1, 1, 2, 3, 7, 8, 22, 32, 66, 91, 233, 263, 0
Offset: 1
Examples
First few rows of the triangle = 1; 1, 0; 1, 1, 0; 1, 0, 2, 0; 1, 1, 2, 3, 0; 1, 0, 0, 0, 7, 0; 1, 1, 2, 3, 7, 8, 0; 1, 0, 2, 0, 7, 0, 22, 0; 1, 1, 0, 3, 7, 0, 22, 32, 0; 1, 0, 2, 0, 0, 0, 22, 0, 66, 0; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Maple
A045545:= n->`if`(n<3, 1, add(`if`(gcd(n,j)=1, A045545(j), 0), j=1..n-1) ); T:= (n,k) -> `if`(gcd(n,k)=1, A045545(k), 0); seq(seq(T(n,k), k=1..n), n=1..12); # G. C. Greubel, Mar 08 2021
-
Mathematica
A045545[n_]:= A045545[n]= If[n<3, 1, Sum[Boole[GCD[n, k]==1] A045545[k], {k,n-1}]]; T[n_, k_]:= If[GCD[n, k]==1, A045545[k], 0]; Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 08 2021 *)
-
Sage
@CachedFunction def A045545(n): return 1 if n<3 else sum( kronecker_delta(gcd(n, j), 1)*A045545(j) for j in (0..n-1) ) def T(n,k): return A045545(k) if gcd(n,k)==1 else 0 flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 08 2021
Comments