A143663 a(n) is the least prime such that the multiplicative order of 3 mod a(n) equals n, or a(n)=1 if no such prime exists.
2, 1, 13, 5, 11, 7, 1093, 41, 757, 61, 23, 73, 797161, 547, 4561, 17, 1871, 19, 1597, 1181, 368089, 67, 47, 6481, 8951, 398581, 109, 29, 59, 31, 683, 21523361, 2413941289, 103, 71, 530713, 13097927, 2851, 313, 42521761, 83, 43, 431, 5501, 181, 23535794707
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..730 (first 153 terms from Robert G. Wilson v)
Crossrefs
Programs
-
Maple
a:= proc(n) local f,p; f:= numtheory:-factorset(3^n - 1); for p in f do if numtheory:-order(3,p) = n then return p fi od: 1 end proc: seq(a(n),n=1..100); # Robert Israel, Oct 13 2014
-
Mathematica
p = 2; t = Table[0, {100}]; While[p < 100000001, a = MultiplicativeOrder[3, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p; Print[{a, p}]]; p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)
Extensions
More terms from Robert G. Wilson v, Dec 11 2013
Comments