A143665 a(n) is the least prime such that the multiplicative order of 5 mod a(n) equals n.
2, 3, 31, 13, 11, 7, 19531, 313, 19, 521, 12207031, 601, 305175781, 29, 181, 17, 409, 5167, 191, 41, 379, 23, 8971, 390001, 101, 5227, 109, 234750601, 59, 61, 1861, 2593, 199, 3061, 211, 37, 149, 761, 79, 241, 2238236249, 43, 1644512641, 89, 1171, 47
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..520
Crossrefs
Programs
-
Mathematica
p = 2; t = Table[0, {100}]; While[p < 3000000001, a = MultiplicativeOrder[5, p]; If[0 < a < 101 && t[[a]] == 0, t[[a]] = p]; p = NextPrime@ p]; t (* Robert G. Wilson v, Oct 13 2014 *)
Extensions
a(23)-a(40) from Robert G. Wilson v, Oct 13 2014
a(41)-a(46) from Robert G. Wilson v, Oct 15 2014