cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143700 a(n) is the least odd number m minimizing A007947(m*(2^n-m)).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 3, 13, 169, 25, 243, 375, 11, 49, 7, 3, 18225, 71875, 4913, 1701, 144027, 1825, 3483, 2197, 9156027, 131989, 1103, 5103, 38525, 458703, 1523, 3483891, 19283525
Offset: 1

Views

Author

Artur Jasinski, Nov 10 2008

Keywords

Comments

Smallest odd number a(n) such that product of distinct prime divisors of (2^n)*a(n)*(2^n - a(n)) is the smallest available for a(n) <= 2^x - a(n) < 2^x.
Product of distinct prime divisors of (2^n)*a(n)*(2^n - a(n)) is also called radical: rad((2^n)*a(n)*(2^n - a(n))).
For numbers 2^n - a(n) see A143701.
For minimal values of rad((2^n)*a(n)*(2^n - a(n))) see A143702.
Related to the abc conjecture. - M. F. Hasler, Nov 13 2008

Crossrefs

Programs

  • Mathematica
    a = {{1, 1}}; aa = {1}; bb = {}; rr = {}; Do[logmax = 0; k = 2^x; w = Floor[(k - 1)/2]; Do[m = FactorInteger[n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log > logmax, bmin = k - n; amax = n; logmax = log; r = rad], {n, 1, w, 2}]; Print[{x, amax}]; AppendTo[aa, amax]; AppendTo[bb, bmin]; AppendTo[rr, r]; AppendTo[a, {x, logmax}], {x, 2, 15}]; aa (* Artur Jasinski with assistance of M. F. Hasler *)
  • PARI
    A143700(n) = {my(b=1, m=2^n-b); forstep(a=3, 2^(n-1), 2, A007947(a)*A007947(2^n-a)A007947((2^n-a)*b=a)); b; } \\ M. F. Hasler, Nov 13 2008

Extensions

a(28)-a(33) from M. F. Hasler, Nov 13 2008
Showing 1-1 of 1 results.