A143734 Number of paths of a generalized chess Queen from (0,0,0) to (n,n,n) in a cube, in which the Queen moves toward the goal point at each step.
1, 13, 638, 41476, 3015296, 232878412, 18691183682, 1540840801552, 129548309399618, 11057865563760844, 955237244106091682, 83324522236732005112, 7327068320498628273506, 648679579345635742189498, 57761885964038080406607410, 5169168679056263697679753150
Offset: 0
Keywords
Examples
a(1)=13 because there are 13 generalized Queen paths from (0,0,0) to (1,1,1).
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..250 (first 81 terms from Alois P. Heinz)
Crossrefs
A132595 gives the two-dimensional version of this sequence.
Programs
-
Maple
b:= proc(x, y, z) option remember; `if`(x=0 and y=0 and z=0, 1, add(b(x-i, y, z), i=1..x)+ add(b(x, y-i, z), i=1..y)+ add(b(x, y, z-i), i=1..z)+ add(b(x-i, y-i, z), i=1..min(x, y))+ add(b(x-i, y, z-i), i=1..min(x, z))+ add(b(x, y-i, z-i), i=1..min(y, z))+ add(b(x-i, y-i, z-i), i=1..min(x, y, z))) end: a:= n-> b(n$3): seq(a(n), n=0..20); # Alois P. Heinz, Jul 23 2012
-
Mathematica
q[1, 1, 1] = 1; q[1, 1, 2] = 1; q[1, 2, 1] = 1; q[1, 1, 2] = 1; q[i_, j_, k_] := q[i, j, k] = Sum[q[x, j, k], {x, 1, i - 1}] + Sum[q[i, y, k], {y, 1, j - 1}] + Sum[q[i, j, z], {z, 1, k - 1}] + Sum[q[i - w, j - w, k], {w, 1, Min[i, j]}] + Sum[q[i, j - w, k - w], {w, 1, Min[j, k]}] + Sum[q[i - w, j, k - w], {w, 1, Min[i, k]}] + Sum[q[i - w, j - w, k - w], {w, 1, Min[i, j, k]}]; a[n_] := q[n, n, n];
Formula
q(1,1,1) = 1; q(1,1,2) = 1; q(1,2,1) = 1; q(1,1,2) = 1; q(i_,j,k) = Sum(q(x,j,k), {x,1,i-1}) + Sum(q(i,y,k), {y,1,j-1}] + Sum(q(i,j,z), {z,1,k-1}) + Sum(q(i-w,j-w,k), {w,1,Min(i,j)}) + Sum(q(i,j-w,k-w), {w,1,Min(j, k)}) + Sum(q(i-w,j,k-w), {w,1,Min(i,k)}) + Sum(q(i-w,j-w,k-w), {w,1,Min(i,j,k)}); a(n) = q(n,n,n).
a(n) ~ c * d^(3*n) / n, where d = 4.575760096729293131840036142861966071... is the root of the equation -8 - 11*d - 9*d^2 - 2*d^3 + d^4 = 0, and c = 0.14917103190900041974882341373298677... . - Vaclav Kotesovec, Aug 23 2014
Comments