cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176848 Number of compositions of n into floor(j/3) kinds of j's for all j>=1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 4, 5, 10, 15, 21, 36, 56, 83, 134, 210, 320, 505, 791, 1221, 1911, 2988, 4639, 7240, 11305, 17595, 27436, 42806, 66691, 103968, 162144, 252720, 393965, 614285, 957581, 1492791, 2327396, 3628273, 5656274, 8818275, 13747425, 21431700, 33411976, 52088551, 81204526, 126596778, 197361904, 307682405
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2011

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1-sum(j>=1, k_j * x^j )).

Crossrefs

Cf. A121907 (floor((3*j-1)/2)), A055841 (3*j-1), A052156 (2*j-1), A006053 (floor(j/2)), A143787 (floor((3*j)/2)).

Programs

  • PARI
    N=66; x='x+O('x^N) /* that many terms */
    gf= 1/(1-sum(j=1,N, floor(j/3)*x^j ))
    Vec(gf) /* show terms */

Formula

G.f.: 1/(1-sum(j>=1, floor(j/3)*x^j )).
Conjectural g.f.: (x-1)^2*(x^2+x+1) / (x^4-2*x^3-x+1). - Colin Barker, May 15 2013
G.f.: 1 + x^3*Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + 2*x^2 - x^3)/( x*(4*k+3 + 2*x^2 - x^3 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013
Showing 1-1 of 1 results.