cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113435 a(n) = a(n-1) + Sum_{k=0..n/3} a(n-3k) with a(0)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 16, 26, 41, 62, 98, 154, 237, 371, 581, 901, 1406, 2197, 3418, 5329, 8317, 12956, 20196, 31501, 49096, 76532, 119338, 186029, 289997, 452141, 704861, 1098826, 1713111, 2670692, 4163483, 6490879, 10119152, 15775426
Offset: 0

Views

Author

Floor van Lamoen, Nov 04 2005

Keywords

Comments

If presented in three rows a(3n), a(3n+1) and a(3n+2) each term is the sum of the previous term in the sequence and the partial sum of its row.

Crossrefs

Partial sums of A176848.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3)/(1 - x - 2*x^3 + x^4), {x,0,50}], x] (* G. C. Greubel, Mar 10 2017 *)
    LinearRecurrence[{1,0,2,-1},{1,1,1,2},40] (* Harvey P. Dale, Dec 17 2023 *)
  • PARI
    x='x+O(x^50); Vec((1 - x^3)/(1 - x - 2*x^3 + x^4)) \\ G. C. Greubel, Mar 10 2017

Formula

a(n) = a(n-1) + 2*a(n-3) - a(n-4) = 7*a(n-3) - 5*a(n-6) + 11*a(n-9) - a(n-12).
G.f.: (1-x^3)/(1-x-2*x^3+x^4).
G.f.: 1/(1-x) + x^3*Q(0)/(2-2*x) , where Q(k) = 1 + 1/(1 - x*(4*k+1 + 2*x^2 - x^3)/( x*(4*k+3 + 2*x^2 - x^3 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013

A143787 Number of compositions of n into floor((3*j)/2) kinds of j's for all j>=1.

Original entry on oeis.org

1, 1, 4, 11, 33, 95, 278, 808, 2355, 6856, 19969, 58151, 169353, 493190, 1436288, 4182793, 12181260, 35474611, 103310209, 300862991, 876181998, 2551642760, 7430968523, 21640683328, 63022629465, 183536340391, 534499885849, 1556586163406, 4533135643968, 13201529892305, 38445880553108, 111963215139163, 326062542045345
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2011

Keywords

Comments

The g.f. for compositions of k_1 kinds of 1's, k_2 kinds of 2's, ..., k_j kinds of j's, ... is 1/(1-sum(j>=1, k_j * x^j )).

Crossrefs

Cf. A121907 (floor((3*j-1)/2)), A055841 (3*j-1), A052156 (2*j-1), A006053 (floor(j/2)), A176848 (floor(j/3)).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-1},{1,1,4,11},50] (* Paolo Xausa, Nov 14 2023 *)

Formula

a(n) = +2*a(n-1) +3*a(n-2) -1*a(n-3).
G.f.: ((1-x)^2*(1+x))/(1-2*x-3*x^2+x^3).
G.f.: 1/(1-sum(j>=1, floor((3*j)/2)*x^j )).
Showing 1-2 of 2 results.