A113436 First row of A113435.
1, 2, 7, 26, 98, 371, 1406, 5329, 20196, 76532, 289997, 1098826, 4163483, 15775426, 59772826, 226477879, 858118966, 3251390237, 12319431012, 46677994276, 176861668393, 670124115506, 2539082288671, 9620514646154, 36451871795186
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-15,11,-1).
Crossrefs
Cf. A113435.
Programs
-
Mathematica
CoefficientList[Series[(1 - 5*x + 8*x^2 - 4*x^3)/(1 - 7*x + 15*x^2 - 11*x^3 + x^4), {x,0,50}], x] (* or *) LinearRecurrence[{7,-15,11,-1}, {1, 2,7,26}, 50] (* G. C. Greubel, Mar 10 2017 *)
-
PARI
my(x='x+ O(x^50)); Vec((1 -5*x +8*x^2 -4*x^3)/(1 -7*x +15*x^2 -11*x^3 +x^4)) \\ G. C. Greubel, Mar 10 2017
Formula
a(n) = A113435(3*n).
a(n) = 7*a(n-1) - 15*a(n-2) + 11*a(n-3) - a(n-4).
G.f.: (1 -5*x +8*x^2 -4*x^3)/(1 -7*x +15*x^2 -11*x^3 +x^4).
Comments