cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113435 a(n) = a(n-1) + Sum_{k=0..n/3} a(n-3k) with a(0)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 16, 26, 41, 62, 98, 154, 237, 371, 581, 901, 1406, 2197, 3418, 5329, 8317, 12956, 20196, 31501, 49096, 76532, 119338, 186029, 289997, 452141, 704861, 1098826, 1713111, 2670692, 4163483, 6490879, 10119152, 15775426
Offset: 0

Views

Author

Floor van Lamoen, Nov 04 2005

Keywords

Comments

If presented in three rows a(3n), a(3n+1) and a(3n+2) each term is the sum of the previous term in the sequence and the partial sum of its row.

Crossrefs

Partial sums of A176848.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3)/(1 - x - 2*x^3 + x^4), {x,0,50}], x] (* G. C. Greubel, Mar 10 2017 *)
    LinearRecurrence[{1,0,2,-1},{1,1,1,2},40] (* Harvey P. Dale, Dec 17 2023 *)
  • PARI
    x='x+O(x^50); Vec((1 - x^3)/(1 - x - 2*x^3 + x^4)) \\ G. C. Greubel, Mar 10 2017

Formula

a(n) = a(n-1) + 2*a(n-3) - a(n-4) = 7*a(n-3) - 5*a(n-6) + 11*a(n-9) - a(n-12).
G.f.: (1-x^3)/(1-x-2*x^3+x^4).
G.f.: 1/(1-x) + x^3*Q(0)/(2-2*x) , where Q(k) = 1 + 1/(1 - x*(4*k+1 + 2*x^2 - x^3)/( x*(4*k+3 + 2*x^2 - x^3 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013

A113439 a(n) = a(n-1) + Sum_{k=1..floor(n/4)} a(n-4k), with a(0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 12, 17, 23, 34, 50, 72, 101, 146, 212, 306, 436, 627, 905, 1305, 1871, 2689, 3872, 5577, 8014, 11521, 16576, 23858, 34309, 49337, 70968, 102108, 146868, 211233, 303832, 437080, 628708, 904306, 1300737, 1871065, 2691401
Offset: 0

Views

Author

Floor van Lamoen, Nov 04 2005

Keywords

Comments

If presented in four rows a(4k), a(4k+1), a(4k+2) and a(4k+3), each term is the sum of the previous term in the sequence and the partial sum of its row; see Example section.

Examples

			From _Jon E. Schoenfield_, Mar 11 2017: (Start)
Table of values T(j,k) = a(4k+j) in 4 rows:
.
  j | k=0     1     2     3     4     5     6     7
----+--------------------------------------------------
  0 |   1     2     8    34   146   627  2689 11521 ...
  1 |   1     3    12    50   212   905  3872 16576 ...
  2 |   1     4    17    72   306  1305  5577 23858 ...
  3 |   1     5    23   101   436  1871  8014 34309 ...
.
    T(2,4) = T(1,4) + T(2,0) + T(2,1) + T(2,2) + T(2,3)
      306  =   212  +    1   +    4   +   17   +   72
(End)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^4)/(1 - x - 2*x^4 + x^5), {x,0,50}], x] (* G. C. Greubel, Mar 11 2017 *)
    LinearRecurrence[{1,0,0,2,-1},{1,1,1,1,2},50] (* Harvey P. Dale, Nov 10 2019 *)
  • PARI
    x='x+O('x^50); Vec((1-x^4)/(1-x-2*x^4+x^5)) \\ G. C. Greubel, Mar 11 2017

Formula

a(n) = a(n-1) + 2*a(n-4) - a(n-5).
a(n) = 9*a(n-4) - 28*a(n-8) + 38*a(n-12) - 20*a(n-16) +a(n-20).
G.f.: (1-x^4)/(1-x-2*x^4+x^5).

A113445 Triangle T(n,k) read by rows: consider the sequence a(m) = a(m-1) + sum_{0

Original entry on oeis.org

1, 3, -1, 5, -6, 1, 7, -15, 11, -1, 9, -28, 38, -20, 1, 11, -45, 90, -90, 37, -1, 13, -66, 175, -260, 207, -70, 1, 15, -91, 301, -595, 707, -469, 135, -1, 17, -120, 476, -1176, 1862, -1848, 1052, -264, 1, 19, -153, 708, -2100, 4158, -5502, 4692, -2340, 521, -1
Offset: 0

Views

Author

Floor van Lamoen, Nov 04 2005

Keywords

Comments

The sequence a(m) is also the expansion of (1-x^n)/(1-x-2x^n+x^{n+1}).
Instead of b(i) = a(n*i) one can take b(i) = a(n*i+p) for p=1..n-1.

Examples

			For n=5 (A113444) the recurrence relation is b(i) = 11b(i-1)-45b(i-2) +90b(i-3)-90b(i-4)+37b(i-5)-b(i-6), so the fifth row reads 11, -45, 90, -90, 37, -1.
		

Crossrefs

Columns k=0..2 give: A005408, -A000384, A007585(n-1) for n>=1. - Alois P. Heinz, Jul 16 2009

Programs

  • Maple
    T:= (n,k)-> (-1)^k /(k+1)! *(1+k +(n-k) *2^(k+1)) *mul (n+j-k, j=1..k):
    seq(seq(T(n,k), k=0..n), n=0..11);  # Alois P. Heinz, Jul 16 2009

Formula

From Alois P. Heinz, Jul 16 2009: (Start)
T(n,k) = (-1)^k/(k+1)! * (1+k+(n-k)*2^(k+1)) * Product_{j=1..k}(n+j-k).
G.f. of column k: (-1)^k * x^k * (1+(2^(k+1)-1)*x)/(1-x)^(k+2). (End)

Extensions

More terms from Alois P. Heinz, Jul 16 2009
Showing 1-3 of 3 results.