cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143805 Eigensequence of triangle A130534.

Original entry on oeis.org

1, 1, 2, 7, 36, 250, 2229, 24656, 329883, 5233837, 96907908, 2066551242, 50196458429, 1375782397859, 42203985613593, 1438854199059479, 54180508061067099, 2241000820010271224, 101316373253530824771, 4984697039955303538934, 265819807417517749652933
Offset: 0

Views

Author

Gary W. Adamson, Sep 01 2008

Keywords

Comments

Triangle A130534 begins:
1;
1, 1;
2, 3, 1;
6, 11, 6, 1;
24, 50, 35, 10, 1;
...
Shift the entire triangle down 1 place, with T(0,0) = 1. Let T = the new triangle:
1;
1;
1, 1;
2, 3, 1;
...
This sequence is lim_{n -> infinity} T^n as a vector.

Examples

			From _Paul D. Hanna_, May 20 2009: (Start)
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 36*x^4/4! + 250*x^5/5! + ...
A(x) = 1 - log(1-x) + log(1-x)^2/2! - 2*log(1-x)^3/3! + 7*log(1-x)^4/4! - 36*log(1-x)^5/5! +- ... (End)
		

Crossrefs

Cf. A143806.

Programs

  • PARI
    {a(n)=local(A=[1]);for(i=1,n,A=Vec(serlaplace(1+sum(k=1,#A,A[k]*(-log(1-x+x*O(x^n)))^k/k!))));A[n+1]} \\ Paul D. Hanna, May 20 2009
    
  • PARI
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {a(n)=if(n==0, 1, sum(k=0, n-1, (-1)^(n-k-1)*Stirling1(n, k+1)*a(k)))} \\ Paul D. Hanna, Oct 01 2013

Formula

a(n) = Sum_{k=0..n-1} (-1)^(n-k-1) * Stirling1(n,k+1) * a(k) for n>0 with a(0)=1 (by definition). - Paul D. Hanna, Oct 01 2013
E.g.f.: Sum_{n>=0} a(n)*x^n/n! = 1 + Sum_{n>=1} a(n-1)*(-log(1-x))^n/n!. - Paul D. Hanna, May 20 2009
Conjecture: a(n) = R(n,0) where R(n,k) = R(n-1,n-1) + Sum_{j=0..k-1} (j+1)*R(n-1,j) for 0 <= k <= n with R(0,0) = 1. - Mikhail Kurkov, Jul 18 2025

Extensions

Extended by Paul D. Hanna, May 20 2009
Offset 0 by Georg Fischer, Apr 14 2024
Showing 1-1 of 1 results.