cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143822 Primes p such that sigma_0((p*p + 1)/2) = 4.

Original entry on oeis.org

13, 17, 23, 31, 37, 53, 67, 89, 97, 103, 109, 113, 127, 137, 149, 151, 163, 167, 179, 197, 211, 223, 227, 229, 241, 263, 269, 277, 281, 283, 311, 331, 347, 359, 367, 373, 383, 389, 397, 419, 431, 433, 439, 479, 491, 503, 509, 541, 547, 587, 601, 617, 619, 653
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 02 2008

Keywords

Comments

A048161 are primes p such that sigma_0((p*p+1)/2)= 2. Primes p such that sigma_0((p*p+1)/2)= 3 gives all RMS numbers (A140480) with 2 divisors (prime RMS numbers, prime NSW numbers (A088165)) and all RMS numbers with 4 divisors as those are a multiple of two nonequal RMS prime numbers. In general we look after primes p such that sigma_0((p*p+1)/2) equals some given integer k. RMS numbers n=p_1*...*p_t have k=2^t divisors (p_i prime, t integer >=1) and sigma_2(p_1*...*p_t)=(2^t)* (q_1^r_1 *...* q_t^r_t), q_j prime, r_t integer >=1.

Crossrefs

Programs

  • Maple
    A066885 := proc(n) local p; p :=ithprime(n) ; (p^2+1)/2 ; end: A000005 := proc(n) numtheory[tau](n) ; end: for n from 2 to 300 do if A000005(A066885(n)) = 4 then printf("%d,",ithprime(n)) ; fi; od: # R. J. Mathar, Sep 04 2008
  • Mathematica
    Select[Range[650], PrimeQ[#] && DivisorSigma[0, (#^2 + 1)/2] == 4 &] (* Amiram Eldar, Mar 11 2020 *)
    Select[Prime[Range[150]],DivisorSigma[0,(#^2+1)/2]==4&] (* Harvey P. Dale, Sep 22 2022 *)

Extensions

97 inserted and extended by R. J. Mathar, Sep 04 2008