A143841 Table read by antidiagonals: T(n,k) is the number of strongly connected directed multigraphs with loops with n arcs and up to k vertices.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 7, 1, 0, 1, 1, 2, 4, 11, 11, 1, 0, 1, 1, 2, 4, 12, 30, 20, 1, 0, 1, 1, 2, 4, 12, 36, 93, 29, 1, 0, 1, 1, 2, 4, 12, 37, 152, 237, 45, 1, 0, 1, 1, 2, 4, 12, 37, 161, 587, 579, 61, 1, 0
Offset: 0
Examples
Array begins: ============================================= n\k | 0 1 2 3 4 5 6 7 8 ----+---------------------------------------- 0 | 1 1 1 1 1 1 1 1 1 ... 1 | 0 1 1 1 1 1 1 1 1 ... 2 | 0 1 2 2 2 2 2 2 2 ... 3 | 0 1 3 4 4 4 4 4 4 ... 4 | 0 1 7 11 12 12 12 12 12 ... 5 | 0 1 11 30 36 37 37 37 37 ... 6 | 0 1 20 93 152 161 162 162 162 ... 7 | 0 1 29 237 587 725 737 738 738 ... 8 | 0 1 45 579 2249 3610 3911 3927 3928 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..860
Crossrefs
Programs
-
PARI
\\ See PARI link in A350489 for program code. A(n)={my(data=A139622rows(n), M=matrix(n+1, n+1, i, j, if(i==1, 1, sum(k=1, min(i-1,j-1), data[i-1][k])))); M} { my(M=A(8)); for(n=1, #M~, print(M[n,])) } \\ Andrew Howroyd, Jan 14 2022
Formula
Extensions
Name clarified and terms a(32) and beyond from Andrew Howroyd, Jan 14 2022