cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143894 Expansion of (chi(q)^5 * chi(-q))^2 in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 8, 26, 48, 79, 168, 326, 496, 755, 1296, 2106, 3072, 4460, 6840, 10284, 14448, 20165, 29184, 41640, 56880, 77352, 107472, 147902, 197616, 263019, 354888, 475516, 624048, 816065, 1076736, 1413142, 1826416, 2353446, 3050400, 3936754, 5022720
Offset: 0

Views

Author

Michael Somos, Sep 04 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x + 26*x^2 + 48*x^3 + 79*x^4 + 168*x^5 + 326*x^6 + 496*x^7 + ...
G.f. = 1/q + 8*q + 26*q^3 + 48*q^5 + 79*q^7 + 168*q^9 + 326*q^11 + 496*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^9 / (QPochhammer[ x]^4 QPochhammer[ x^4]^5))^2, {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)^4 / (1 + x^(2*k))^5)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^9 / (eta(x + A)^4 * eta(x^4 + A)^5))^2, n))};

Formula

Expansion of q^(1/2) * (eta(q^2)^9 / (eta(q)^4 * eta(q^4)^5))^2 in powers of q.
Euler transform of period 4 sequence [ 8, -10, 8, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143895.
G.f.: (Product_{k>0} (1 + x^k)^4 / (1 + x^(2*k))^5)^2.
a(2*n) = A052241(n). a(2*n + 1) = 8 * A022571(n).
a(n) ~ exp(sqrt(n)*Pi) / (sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015