A143895 Expansion of (chi(q)^4 / chi(-q))^2 in powers of q where chi() is a Ramanujan theta function.
1, 10, 47, 150, 403, 1002, 2316, 5004, 10309, 20456, 39240, 73102, 132779, 235868, 410785, 702630, 1182342, 1960418, 3206675, 5179670, 8270086, 13062994, 20427293, 31644200, 48589970, 73994118, 111802523, 167685238, 249745021, 369499928
Offset: 0
Keywords
Examples
G.f. = 1 + 10*x + 47*x^2 + 150*x^3 + 403*x^4 + 1002*x^5 + 2316*x^6 + 5004*x^7 + ... G.f. = 1/q + 10*q^3 + 47*q^7 + 150*q^11 + 403*q^15 + 1002*q^19 + 2316*q^23 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A143894.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^9 / (QPochhammer[ x]^5 QPochhammer[ x^4]^4))^2, {x, 0, n}]; (* Michael Somos, Apr 26 2015 *) nmax = 40; CoefficientList[Series[Product[((1 + x^k)^5 / (1 + x^(2*k))^4)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^9 / (eta(x + A)^5 * eta(x^4 + A)^4))^2, n))};
Formula
Expansion of q^(1/4) * (eta(q^2)^9 / (eta(q)^5 * eta(q^4)^4))^2 in powers of q.
Euler transform of period 4 sequence [ 10, -8, 10, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143894.
G.f.: (Product_{k>0} (1 + x^k)^5 / (1 + x^(2*k))^4)^2.
a(n) ~ exp(sqrt(2*n)*Pi) / (2^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Comments