cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143900 Number of simple graphs on n labeled nodes containing at least one cycle subgraph, also row sums of A143899.

Original entry on oeis.org

0, 0, 0, 1, 26, 733, 29836, 2060191, 267873508, 68709450231, 35184166480296, 36028792251523289, 73786976171465003256, 302231454900131663566437, 2475880078570650265515241808, 40564819207303337099536803011071, 1329227995784915872766249150185503728
Offset: 0

Views

Author

Alois P. Heinz, Sep 04 2008

Keywords

Examples

			a(3) = 1, because 1 simple graph on 3 nodes with 3 edges contains a cycle subgraph:
..1-2..
..|/...
..3....
		

Crossrefs

Row sums of A143899.

Programs

  • Maple
    graphs:= n-> 2^binomial(n,2): forests:= n-> add(add(binomial(m,j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j/ m!, j=0..m), m=0..n): a:= n-> graphs(n) -forests(n): seq(a(n), n=0..18);
  • Mathematica
    graphs[n_] := 2^Binomial[n, 2]; forests[n_] := Sum[Binomial[m, j]* Binomial[n-1, n-m-j]*n^(n-m-j)*(m+j)!/(-2)^j/m!, {m, 0, n}, {j, 0, m}]; a[0] = 0; a[n_] := graphs[n] - forests[n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)

Formula

a(n) = A006125(n) - A001858(n).
a(n) = Sum_{k=3..C(n,2)} A143899(n,k).