cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143911 Triangle read by rows: T(n,k) = number of forests on n labeled nodes, where k is the maximum of the number of edges per tree (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 9, 12, 16, 1, 25, 60, 80, 125, 1, 75, 330, 480, 750, 1296, 1, 231, 1680, 3920, 5250, 9072, 16807, 1, 763, 9408, 33600, 49000, 72576, 134456, 262144, 1, 2619, 56952, 254016, 598500, 762048, 1210104, 2359296, 4782969, 1, 9495, 348120
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2008

Keywords

Examples

			T(4,1) = 9, because 9 forests on 4 labeled nodes have 1 as the maximum of the number of edges per tree:
  .1-2. .1.2. .1.2. .1.2. .1.2. .1.2. .1-2. .1.2. .1.2.
  ..... ...|. ..... .|... ..\.. ../.. ..... .|.|. ..X..
  .4.3. .4.3. .4-3. .4.3. .4.3. .4.3. .4-3. .4.3. .4.3.
Triangle begins:
  1;
  1,  1;
  1,  3,   3;
  1,  9,  12,  16;
  1, 25,  60,  80, 125;
  1, 75, 330, 480, 750, 1296;
		

Crossrefs

Columns k=0-1 give: A000012, A001189.
Row sums give A001858.
Rightmost diagonal gives A000272.
Cf. A138464.

Programs

  • Maple
    A:= (n,k)-> coeff(series(exp(add(j^(j-2) *x^j/j!, j=1..k)), x, n+1), x,n)*n!: T:= (n,k)-> A(n,k+1)-A(n,k): seq(seq(T(n,k), k=0..n-1), n=1..11);
  • Mathematica
    A[n_, k_] := SeriesCoefficient[Exp[Sum[j^(j-2)*x^j/j!, {j, 1, k}]], {x, 0, n}]*n!; T[n_, k_] := A[n, k+1] - A[n, k];
    Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, May 31 2016, translated from Maple *)

Formula

See program.