A143929 Eigentriangle by rows, termwise products of the natural numbers decrescendo and the bisected Fibonacci series.
1, 2, 1, 3, 2, 3, 4, 3, 6, 8, 5, 4, 9, 16, 21, 6, 5, 12, 24, 42, 55, 7, 6, 15, 32, 63, 110, 144, 8, 7, 18, 40, 84, 165, 288, 377, 9, 8, 21, 48, 105, 220, 432, 754, 987, 10, 9, 24, 56, 126, 275, 576, 1131, 1974, 2584
Offset: 1
Examples
First rows of the triangle T(n, m), n >= 1, m = 1..n: 1; 2, 1; 3, 2, 3; 4, 3, 6, 8; 5, 4, 9, 16, 21; 6, 5, 12, 24, 42, 55; 7, 6, 15, 32, 63, 110, 144; 8, 7, 18, 40, 84, 165, 288, 377; 9, 8, 21, 48, 105, 220, 432, 754, 987; ... Example: row 4 = (4, 3, 6, 8) = termwise product of (4, 3, 2, 1) and (1, 1, 3, 8).
Formula
Given A004736: (1; 2,1; 3,2,1; 4,3,2,1; ...), we apply the termwise products of the sequence {A088305(n-1)}_{n>=1} starting (1, 1, 3, 8, 21, ...).
From Wolfdieter Lang, Jan 07 2021: (Start)
T(n, m) = 0 if n < m; T(n, 1) = n, for n >= 1, and T(n, m) = F(2*(m-1))*(n-m+1) for n >= m >= 2, with F = A000045 (Fibonacci).
G.f. column m: G(1, x) = x/(1-x)^2, G(m, x) = F(2*(m-1))*x^m/(1-x)^2, for m >= 2. (End)
With offset 0: g.f. of row polynomials R(n, x) := Sum_{m=0..n} t(n, m)*x^m, that is, g.f. of triangle t(n,m) = T(n+1, m+1):
G(z, x) = (1 - x*z)^2 / ((1 - z)^2*(1 - 3*x*z + (x*z)^2)). - Wolfdieter Lang, Apr 09 2021
Comments