A143935 Number of primes between n^K and (n+1)^K, inclusive, where K=log(127)/log(16).
2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 5, 1, 4, 2, 3, 3, 4, 1, 5, 3, 3, 4, 3, 3, 3, 4, 4, 3, 5, 4, 3, 5, 2, 4, 5, 4, 5, 5, 3, 5, 5, 2, 6, 5, 4, 4, 4, 5, 5, 7, 5, 5, 3, 5, 6, 3, 8, 3, 4, 5, 6, 7, 5, 6, 8, 5, 4, 6, 6, 3, 7, 5, 4, 8, 5, 8, 6, 3, 7, 7, 6, 8, 7, 4, 5, 6, 5, 9, 9, 7, 6, 6, 6, 6, 7, 6, 4, 8, 5, 8, 8, 4
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Conjecture 60: Generalization of Legendre's Conjecture
Programs
-
Mathematica
k= 1.74717117169304146332; Table[Length[Select[Range[Ceiling[n^k],Floor[(n+1)^k]], PrimeQ]], {n,150}] With[{k=Log[16,127]},Table[Count[Range[Ceiling[n^k],Floor[(n+1)^k]],?PrimeQ],{n,110}]] (* _Harvey P. Dale, Apr 03 2019 *)
Extensions
Corrected a(15) from 1 to 0 Enoch Haga, Sep 24 2008
My intention was to include the endpoints of the range. Using k=log(127)/log(16), the endpoint for n=15 is exactly 127, which is prime. - T. D. Noe, Sep 25 2008
Comments