A143947 Triangle read by rows: T(n,k) is the number of permutations of [n] for which the sum of the positions of the right-to-left minima is k (1 <= k <= n*(n+1)/2).
1, 0, 1, 1, 0, 0, 2, 1, 2, 1, 0, 0, 0, 6, 2, 3, 7, 2, 3, 1, 0, 0, 0, 0, 24, 6, 8, 14, 27, 10, 9, 14, 3, 4, 1, 0, 0, 0, 0, 0, 120, 24, 30, 46, 68, 142, 41, 53, 50, 73, 23, 17, 23, 4, 5, 1, 0, 0, 0, 0, 0, 0, 720, 120, 144, 204, 270, 436, 834, 260, 256, 351, 310, 463, 148, 145, 118, 148, 40
Offset: 1
Examples
T(4,6) = 3 because we have 4132, 3142 and 2143 with right-to-left minima at positions 2 and 4. Triangle starts: 1; 0, 1, 1; 0, 0, 2, 1, 2, 1; 0, 0, 0, 6, 2, 3, 7, 2, 3, 1; 0, 0, 0, 0, 24, 6, 8, 14, 27, 10, 9, 14, 3, 4, 1; ...
Links
- Alois P. Heinz, Rows n = 1..50, flattened
Crossrefs
Programs
-
Maple
P:=proc(n) options operator, arrow: sort(expand(product(t^(n-j)+j,j=0..n-1))) end proc: for n to 7 do seq(coeff(P(n),t,i),i=1..(1/2)*n*(n+1)) end do; # yields sequence in triangular form
-
Mathematica
T[n_] := CoefficientList[Product[n-k+t^k, {k, 1, n-1}] t^(n-1), t]; Array[T, 10] // Flatten (* Jean-François Alcover, Feb 14 2021 *)
Formula
Generating polynomial of row n is (n-1+t)(n-2+t^2)(n-3+t^3)...(1+t^(n-1))t^n.
Comments