cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143952 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k peak plateaux (0<=k<=floor(n/2)). A peak plateau is a run of consecutive peaks that is preceded by an upstep and followed by a down step; a peak consists of an upstep followed by a downstep.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 12, 1, 1, 33, 8, 1, 88, 42, 1, 1, 232, 183, 13, 1, 609, 717, 102, 1, 1, 1596, 2622, 624, 19, 1, 4180, 9134, 3275, 205, 1, 1, 10945, 30691, 15473, 1650, 26, 1, 28656, 100284, 67684, 11020, 366, 1, 1, 75024, 320466, 279106, 64553, 3716, 34, 1
Offset: 0

Views

Author

Emeric Deutsch, Oct 10 2008

Keywords

Comments

Row n has 1+floor(n/2) terms.
Row sums are the Catalan numbers (A000108).
T(n,1)=A027941(n-1)=Fibonacci(2n-1)-1.
Sum(k*T(n,k),k=0..floor(n/2))=A079309(n-1).
For the statistic "number of peaks in peak plateaux", see A143953.

Examples

			T(3,1)=4 because we have UD(UUDD), (UUDD)UD, (UUDUDD) and U(UUDD)D (the peak plateaux are shown between parentheses).
The triangle starts:
1;
1;
1,1;
1,4;
1,12,1;
1,33,8;
1,88,42,1;
		

Crossrefs

Programs

  • Maple
    C:=proc(z) options operator, arrow: (1/2-(1/2)*sqrt(1-4*z))/z end proc: G:=(1-z)*C(z*(1-z)^2/(1-z+z^2-t*z^2)^2)/(1-z+z^2-t*z^2): Gser:=simplify(series(G,z= 0,17)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

The g.f. G=G(t,z) satisfies z(1-z)G^2 - (1-z+z^2-tz^2)G+1-z = 0 (for the explicit form of G see the Maple program).
The trivariate g.f. g=g(x,y,z) of Dyck paths with respect to number of peak plateaux, number of peaks in the peak plateaux and semilength, marked, by x, y and z, respectively satisfies g=1+zg[g+xyz/(1-yz)-z/(1-z)].
T(n,k) = Sum_{r=1..n} Narayana(n-r,k)*binomial(2n-r-k,r-k) where Narayana(n,k) := binomial(n,k)*binomial(n,k-1)/n is the Narayana number A001263. - David Callan, Oct 31 2008