cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A183856 n+floor(sqrt(3n-2)); complement of A143975.

Original entry on oeis.org

2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106
Offset: 1

Views

Author

Clark Kimberling, Jan 07 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(seq(i+k,i=ceil((k^2+2)/3) .. ((k+1)^2+1)/3),k=1..10); # Robert Israel, Jun 04 2019
  • Mathematica
    Array[#+Floor[Sqrt[3#-2]]&,100] (* Harvey P. Dale, Mar 15 2013 *)

Formula

a(n+1) - a(n) = 2 if n is in A000212, 1 otherwise. - Robert Israel, Jun 04 2019

A143974 Rectangular array R by antidiagonals: label each unit square in the first quadrant lattice by its northeast vertex (x,y) and mark those having x+y=1(mod 3); then R(m,n) is the number of marked unit squares in the rectangle [0,m]x[0,n].

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 3, 4, 4, 3, 2, 2, 4, 5, 5, 5, 4, 2, 2, 4, 6, 6, 6, 6, 4, 2, 3, 5, 7, 8, 8, 8, 7, 5, 3, 3, 6, 8, 9, 10, 10, 9, 8, 6, 3, 3, 6, 9, 10, 11, 12, 11, 10, 9, 6, 3, 4, 7, 10, 12, 13, 14, 14, 13, 12, 10, 7, 4, 4, 8, 11, 13, 15, 16, 16, 16, 15, 13, 11, 8, 4, 4, 8
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Examples

			Northwest corner:
0 0 1 1 1 2
0 1 2 2 3 4
1 2 3 4 5 6
1 2 4 5 6 8
1 3 5 6 8 10
R(3,4) counts these marked squares: (1,3), (2,2), (3,1), (3,4).
		

Crossrefs

Formula

R(m,n)=floor(mn/3).
Showing 1-2 of 2 results.