cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144045 Number of paths of a chess Rook in a cube, from (1,1,1) to (n,n,n), where the rook may move in steps that are multiples of (1,0,0), (0,0,1), or (0,0,1).

Original entry on oeis.org

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, 4223303759148, 241144782230124, 13930829740017132, 812470444305924300, 47760356825349969600, 2826309951801018736800, 168207011284961649886800, 10060178088232285063542768, 604273284101165691102038556
Offset: 1

Views

Author

Martin J. Erickson (erickson(AT)truman.edu), Sep 08 2008

Keywords

Examples

			a(2)=6 because there are 6 Rook paths from (1,1,1) to (2,2,2).
G.f. = x + 6*x^2 + 222*x^3 + 9918*x^4 + 486924*x^5 + 25267236*x^6 + ...
		

Crossrefs

Cf. A051708.
Row d=3 of A181731.

Formula

a(n) satisfies the recurrence relation a(1) = 1; a(2) = 6; a(3) = 222; a(4) = 9918; a(n) = ((-121 n^3 + 575n^2 - 872n + 412)a(n - 1) + (-475n^3 + 4887n^2 - 16202n + 17448)a(n - 2) + (1746n^3 - 19818n^2 + 75060n - 94896)a(n - 3) + (-1152n^3 + 16128n^2 - 74880n + 115200)a(n - 4))/(-(2n^3 - 8n^2 + 10n - 4)), n>= 5.
G.f.: 1+int(6*hypergeom([1/3, 2/3],[2],27*x*(3*x-2)/(4*x-1)^3)/((4*x-1)*(64*x-1)),x). [Mark van Hoeij, Dec 10 2009]
Asymptotics: a(n) ~ 9*sqrt(3)/(40*Pi*n)*64^(n-1). - Frederic Chyzak, 2010