A144079 a(n) = the number of digits in the binary representation of n that equal the corresponding digit in the binary reversal of n. (I.e., a(n) = number of 0's in n XOR A030101(n).)
1, 0, 2, 1, 3, 1, 3, 2, 4, 0, 2, 0, 2, 2, 4, 3, 5, 1, 3, 3, 5, 1, 3, 1, 3, 3, 5, 1, 3, 3, 5, 4, 6, 2, 4, 2, 4, 0, 2, 2, 4, 0, 2, 4, 6, 2, 4, 2, 4, 4, 6, 0, 2, 2, 4, 0, 2, 2, 4, 2, 4, 4, 6, 5, 7, 3, 5, 3, 5, 1, 3, 5, 7, 3, 5, 3, 5, 1, 3, 3, 5, 1, 3, 5, 7, 3, 5, 3, 5, 1, 3, 5, 7, 3, 5, 3, 5, 5, 7, 1, 3, 3, 5, 3, 5
Offset: 1
Examples
20 in binary is 10100. Compare this with its digit reversal, 00101. XOR each pair of corresponding digits: 1 XOR 0 = 1, 0 XOR 0 = 0, 1 XOR 1 = 0, 0 XOR 0 = 0, 0 XOR 1 = 1. There are three bit pairs that contain the same values, so a(20) = 3.
Programs
-
Maple
A144079 := proc(n) local a,dgs,i; a := 0 ; dgs := convert(n,base,2) ; for i from 1 to nops(dgs) do if op(i,dgs)+op(-i,dgs) <> 1 then a := a+1 ; fi; od; RETURN(a) ; end: for n from 1 to 240 do printf("%d,",A144079(n)) ; od: # R. J. Mathar, Sep 14 2008
-
Mathematica
Table[With[{c=IntegerDigits[n,2]},Count[BitXor[c,Reverse[c]],0]],{n,110}] (* Harvey P. Dale, Sep 03 2015 *)
Extensions
More terms from R. J. Mathar, Sep 14 2008
Comments