A144081 Eigentriangle generated from expansion of sin(x)*exp(x), row sums = (2^n - 1).
1, 2, 1, 2, 2, 3, 0, 2, 6, 7, -4, 0, 6, 14, 15, -8, -4, 0, 14, 30, 31, -8, -8, -12, 0, 30, 62, 63, 0, -8, -24, -28, 0, 62, 126, 127, 16, 0, -24, -56, -60, 0, 126, 254, 255, 32, 16, 0, -56, -120, -124, 0, 254, 510, 511, 32, 32, 48, 0, -120, -248, -252, 0, 510, 1022, 1023
Offset: 1
Examples
First few rows of the triangle = 1; 2, 1; 2, 2, 3; 0, 2, 6, 7; -4, 0, 6, 14, 15; -8, -4, 0, 14, 30, 31; -8, -8, -12, 0, 30, 62, 63; 0, -8, -24, -28, 0, 62, 126, 127; 16, 0, -24, -56, -60, 0, 126, 254, 255; ... Row 4 = (0, 2, 6, 7) pairwise product of (0, 2, 2, 1) and (1, 1, 3, 7) = (0*1, 2*1, 2*3, 1*7); where (1, 2, 2, 0,...) = the first 4 terms of A009545 with offset 1.
Programs
-
PARI
a25(n) = if (n, 2^n-1, 1); \\ A000225 a45(n) = (1+I)^(n-2) + (1-I)^(n-2); \\ A009545 T(n,k) = if (n>=k, a45(n-k+1)*a25(k-1), 0); row(n) = vector(n, k, a45(n-k+1)*a25(k-1)); \\ Michel Marcus, Nov 20 2022
Formula
A009545 = expansion of sin(x)*exp(x), starting with offset 1: (1, 2, 2, 0, -4, -8, -8,...).
These operations = the following: Matrix A = an infinite lower triangular matrix with rows = A009545 subsequences decrescendo: (1; 2,1; 2,2,1; 0,2,2,1; -4,0,2,2,1;...) and matrix B = an infinite lower triangular matrix with (1, 1, 3, 7, 15,...) in the main diagonal and the rest zeros.
This triangle = A*B.
Comments