A144083 Triangle read by rows: partial sums from the right of an A010892 subsequences decrescendo triangle.
1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 1, 0, 0, 1, 2, 2, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1
Offset: 0
Examples
First few rows of the triangle: 1; 2, 1; 2, 2, 1; 1, 2, 2, 1; 0, 1, 2, 2, 1; 0, 0, 1, 2, 2, 1; 1, 0, 0, 1, 2, 2, 1; 2, 1, 0, 0, 1, 2, 2, 1; 2, 2, 1, 0, 0, 1, 2, 2, 1; 1, 2, 2, 1, 0, 0, 1, 2, 2, 1; 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1; ... Row 3 = (1, 2, 2, 1) = partial sums of (-1, 0, 1, 1).
Programs
-
Mathematica
A010892[n_]:={1, 1, 0, -1, -1,0}[[Mod[n, 6]+1]]; T[n_,k_]:=1+A010892[n-k-1]; Table[T[n,k], {n,0, 11},{k,0,n}]//Flatten (* Stefano Spezia, Feb 11 2023 *)
Formula
T(n, k) = 1 + A010892(n-k-1), with 0 <= k <= n. - Stefano Spezia, Feb 11 2023
Comments