A144090 Triangle read by rows: T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and with exactly 1 fixed point.
1, 2, 0, 3, 6, 3, 4, 24, 36, 8, 5, 60, 210, 220, 45, 6, 120, 780, 1920, 1590, 264, 7, 210, 2205, 9940, 19005, 12978, 1855, 8, 336, 5208, 37520, 130200, 203952, 118664, 14832, 9, 504, 10836, 114408, 630630, 1783656, 2369556, 1201464, 133497
Offset: 1
Examples
T(3,2) = 6 because there are exactly 6 partial bijections (on a 3-element set) with exactly 1 fixed point and of height 2, namely: (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3)- the mappings are coordinate-wise. First six rows: 1 2 0 3 6 3 4 24 36 8 5 60 210 220 45 6 120 780 1920 1590 264
Links
- A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75, (2007), 221-236.
Programs
-
Mathematica
Table[(n!/(n - k)!) Sum[ ((-1)^m/m!) Binomial[n - 1 - m, k - 1 - m], {m, 0, k - 1}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 27 2016 *)
-
PARI
T(n,k) = (n!/(n-k)!)*sum(m=0,k-1,((-1)^m/m!)*binomial(n-1-m,k-1-m)); for (n=1, 10, for (k=1, n, print1(T(n,k), ", "))) \\ Michel Marcus, Apr 27 2016
Formula
T(n,k) = (n!/(n-k)!)*Sum_{m=0..k-1} ((-1)^m/m!)*C(n-1-m,k-1-m).