cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144090 Triangle read by rows: T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and with exactly 1 fixed point.

Original entry on oeis.org

1, 2, 0, 3, 6, 3, 4, 24, 36, 8, 5, 60, 210, 220, 45, 6, 120, 780, 1920, 1590, 264, 7, 210, 2205, 9940, 19005, 12978, 1855, 8, 336, 5208, 37520, 130200, 203952, 118664, 14832, 9, 504, 10836, 114408, 630630, 1783656, 2369556, 1201464, 133497
Offset: 1

Views

Author

Abdullahi Umar, Sep 11 2008

Keywords

Examples

			T(3,2) = 6 because there are exactly 6 partial bijections (on a 3-element set) with exactly 1 fixed point and of height 2, namely: (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3)- the mappings are coordinate-wise.
First six rows:
1
2      0
3      6      3
4     24     36       8
5     60    210     220      45
6    120    780    1920    1590    264
		

Crossrefs

Rows sums are A144086.
Main diagonal gives A000240.

Programs

  • Mathematica
    Table[(n!/(n - k)!) Sum[ ((-1)^m/m!) Binomial[n - 1 - m, k - 1 - m], {m, 0, k - 1}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Apr 27 2016 *)
  • PARI
    T(n,k) = (n!/(n-k)!)*sum(m=0,k-1,((-1)^m/m!)*binomial(n-1-m,k-1-m));
    for (n=1, 10, for (k=1, n, print1(T(n,k), ", "))) \\ Michel Marcus, Apr 27 2016

Formula

T(n,k) = (n!/(n-k)!)*Sum_{m=0..k-1} ((-1)^m/m!)*C(n-1-m,k-1-m).