A144104 Primes p such that log(nextPrime(p))/log(p) is smaller for larger primes.
2, 3, 7, 13, 23, 31, 47, 53, 113, 139, 199, 211, 293, 317, 523, 1327, 1669, 1951, 2179, 2477, 2971, 3271, 4297, 4831, 5591, 5749, 5953, 6491, 6917, 7253, 8467, 9551, 9973, 10799, 11743, 12163, 12853, 15683, 16141, 19609, 31397, 34061, 35617, 35677
Offset: 1
Keywords
Examples
Examples for (log(prime(n+1))/log(prime(n)))^n < (1+1/n)^n < e: (log(3)/log(2))^1 = 1.58... < (1+1/1)^1 = 2 < e; (log(1361)/log(1327))^217 = 2.14... < (1+1/217)^217 = 2.712... < e; (log(8501)/log(8467))^1059 = 1.59... < (1+1/1059)^1059 = 2.716... < e; (log(35729)/log(35677))^3795 = 1.69... < (1+1/3795)^3795 = 2.717... < e. - _Daniel Forgues_, Apr 28 2014
Links
- T. D. Noe, Table of n, a(n) for n = 1..176
- A. Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015
- Wikipedia, Firoozbakht's conjecture
Programs
-
Mathematica
nn=10^5; ps=N[Log[Prime[Range[nn]]]]; ps=Rest[ps]/Most[ps]; k=1; t={}; While[k
Comments