A144112 Weight array W={w(i,j)} of the natural number array A000027.
1, 1, 2, 2, 1, 3, 3, 1, 1, 4, 4, 1, 1, 1, 5, 5, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 1, 1, 8, 8, 1, 1, 1, 1, 1, 1, 1, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
From _Clark Kimberling_, Jan 31 2011: (Start) Northwest corner: 1 1 2 3 4 5 2 1 1 1 1 1 3 1 1 1 1 1 4 1 1 1 1 1 5 1 1 1 1 1. so that the accumulation array has corner: 1...2...4...7...11...16 3...5...8...12..17...23 6...9...13..18..24...31 10..14..19..25..32...40 15..20..26..33..41...50. s(2,4)=1+1+2+3+2+1+1+1=12. (End)
Links
- Stefano Spezia, Table of n, a(n) for n = 1..11325, (first 150 antidiagonals, flattened).
Programs
-
Mathematica
Array[Append[PadRight[{#},#,1],#+1]&,15,0] (* Paolo Xausa, Dec 21 2023 *)
Formula
Row 1: 1 followed by A000027.
Row n: n followed by A000012, for n>1.
G.f.: x*y*(1 - (1 + x)*y + (1 - x + x^2)*y^2)/((1 - x)^2*(1 - y)^2). - Stefano Spezia, Oct 01 2023
Comments