A144116 Number of non-Fibonacci parts in all partitions of n.
0, 0, 0, 1, 1, 3, 5, 9, 14, 23, 34, 54, 76, 113, 158, 226, 309, 431, 580, 790, 1049, 1402, 1838, 2423, 3140, 4081, 5242, 6739, 8574, 10918, 13780, 17392, 21795, 27291, 33969, 42248, 52258, 64572, 79429, 97577, 119388, 145891, 177630, 215986, 261789
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n) option remember; true end: l:= [0, 1]: for k to 100 do b(l[1]):= false; l:= [l[2], l[1]+l[2]] od: aa:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i=0 or n<0 then [0, 0] else g:= aa(n, i-1); h:= aa(n-i, i); [g[1]+h[1], g[2]+h[2] +`if`(b(i), h[1], 0)] fi end: a:= n-> aa(n, n)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Jul 28 2009
-
Mathematica
Clear[b]; b[] = True; l = {0, 1}; For[k=1, k <= 100, k++, b[l[[1]]] = False; l = {l[[2]], l[[1]] + l[[2]]}]; aa[n, i_] := aa[n, i] = Module[{g, h}, If[n==0, {1, 0}, If[i==0 || n<0, {0, 0}, g = aa[n, i-1]; h = aa[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}] ]]; a[n_] := aa[n, n][[2]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 30 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jul 28 2009