A144152 Triangle read by rows: A128174 * X; X = an infinite lower triangular matrix with a shifted Fibonacci sequence: (1, 1, 1, 2, 3, 5, 8, ...) in the main diagonal and the rest zeros.
1, 0, 1, 1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 5, 1, 0, 1, 0, 3, 0, 8, 0, 1, 0, 2, 0, 5, 0, 13, 1, 0, 1, 0, 3, 0, 8, 0, 21, 0, 1, 0, 2, 0, 0, 5, 0, 13, 0, 34, 1, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55
Offset: 1
Examples
First few rows of the triangle = 1; 0, 1; 1, 0, 1; 0, 1, 0, 2; 1, 0, 1, 0, 3 0, 1, 0, 2, 0, 5; 1, 0, 1, 0, 3, 0, 8; 0, 1, 0, 2, 0, 5, 0, 13; 1, 0, 1, 0, 3, 0, 8, 0, 21; ... Row 5 = (1, 0, 1, 0, 3) = termwise products of (1, 0, 1, 0, 1) and (1, 1, 1, 2, 3).
Programs
-
PARI
MT(n,k) = (1+(-1)^(n-k))/2; MF(n,k) = n--; k--; if (n==k, if (n==0, 1, fibonacci(n)), 0); tabl(nn) = {my(T=matrix(nn,nn, n, k, MT(n,k))); my(F=matrix(nn,nn, n, k, MF(n,k))); my(P=T*F); matrix(nn, nn, n, k, if (n>=k, P[n,k], 0));} \\ Michel Marcus, Mar 08 2021
Formula
Extensions
Moved a comment to the Name section. - Omar E. Pol, Mar 08 2021
Comments