cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128379 A000012^23 * A000594.

Original entry on oeis.org

1, -1, -24, 0, 276, 300, -1748, -4300, 4278, 29026, 22724, -94668, -242398, -18722, 856980, 1472252, -384491, -5299269, -7824968, 2088032, 25655442, 38814478, -69160, -99735912, -175711283, -68736397, 294769680, 686373176, 562588924, -513324396, -2155273788, -2808874356
Offset: 1

Views

Author

Gary W. Adamson, Feb 28 2007

Keywords

Comments

Conjecture: given A000012^k * A000594, k=23 and 24 are the only k's generating sequences with zeros. k = 24 in A128378: (1, 0, -24, -24, 252, 552, -1196, -5496, ...).

Crossrefs

Programs

  • Mathematica
    Nest[Accumulate, RamanujanTau[Range[32]], 23] (* Amiram Eldar, Jan 08 2025 *)

Formula

A000012 (partial sum operator) performed 23 times on A000594.

A144249 Apply partial sum operator twice to A000594.

Original entry on oeis.org

1, -22, 207, -1036, 2551, 90, -19115, 46160, -2208, -166496, 203828, 203208, -375150, -551652, 489006, 2516800, -2361340, -4512048, 3998664, 5399616, 2581080, -13068144, -10074096, 14208912, 12992695, 25642190, -34987395, -70969812, 21454401, 84666774, 95035979
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000594.
Partial sums of A144248.

Programs

  • Mathematica
    lst={};s1=0;s2=0;Do[s1=s1+RamanujanTau[n];s2=s2+s1;AppendTo[lst,s2],{n,5!}];lst
    Nest[Accumulate, RamanujanTau[Range[32]], 2] (* Amiram Eldar, Jan 08 2025 *)

A076724 Numbers m such that abs(Sum {k = 1..m} tau(k)) is a prime, where tau is the Ramanujan tau function (A000594).

Original entry on oeis.org

2, 3, 39, 97, 172, 177, 200, 203, 318, 332, 345, 500, 519, 527, 651, 660, 722, 865, 870, 881, 890, 897, 1089, 1091, 1101, 1106, 1156, 1177, 1192, 1205, 1369, 1370, 1393, 1425, 1459, 1466, 1499, 1500, 1503, 1505, 1517, 1519, 1703, 1755, 1779, 1782, 1786
Offset: 1

Views

Author

Robert G. Wilson v, Dec 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; Do[s = s + RamanujanTau[n]; If[PrimeQ[s], Print[n]], {n, 1, 10^4}]
    Flatten[Position[Accumulate[RamanujanTau[Range[0,1800]]],?(PrimeQ[ #]&)]]-1 (* _Harvey P. Dale, Dec 22 2015 *)
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += ramanujantau(k); if(isprime(abs(s)), print1(k, ", ")));} \\ Amiram Eldar, Jan 06 2025

Extensions

Name corrected by Amiram Eldar, Jan 06 2025
Showing 1-3 of 3 results.