cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144258 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows: T(n,k) is the number of forests of trees on n or fewer nodes using a subset of labels 1..n and k edges.

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 8, 6, 3, 0, 16, 24, 27, 16, 0, 32, 80, 150, 190, 125, 0, 64, 240, 660, 1335, 1830, 1296, 0, 128, 672, 2520, 7210, 15435, 22449, 16807, 0, 256, 1792, 8736, 33040, 98105, 219912, 335160, 262144, 0, 512, 4608, 28224, 135072, 521010, 1600452, 3727962, 5902236, 4782969, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2008

Keywords

Examples

			T(3,1) = 6, because there are 6 forests of trees on 3 or fewer nodes using a subset of labels 1,2,3 and 1 edge:
  .1-2. .1... ...2. .1-2. .1.2. .1.2.
  ..... .|... ../.. ..... .|... ../..
  ..... .3... .3... .3... .3... .3...
Triangle begins:
   1;
   2,  0;
   4,  1,   0;
   8,  6,   3,   0;
  16, 24,  27,  16,   0;
  32, 80, 150, 190, 125,  0;
		

Crossrefs

Columns k = 0, 1 give A000079, A001788.
First lower diagonal gives A000272(k+1) with initial term 2.
Row sums give A144259.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 then 2^n
        elif k<0 or n<=k then 0
        elif k=n-1 then n^(n-2)
        else add(binomial(n-1, j) *T(j+1, j) *T(n-1-j, k-j), j=0..k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, 2^n, k < 0 || n <= k, 0, k == n-1, n^(n-2), True, Sum[Binomial[n-1, j]*T[j+1, j]*T[n-1-j, k-j], {j, 0, k}]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 29 2014, translated from Maple *)

Formula

T(n,0) = 2^n, T(n,k) = 0 if k < 0 or n <= k, otherwise T(n,k) = n^(n-2) if k=n-1, otherwise T(n,k) = Sum_{j=0..k} C(n-1,j)*T(j+1,j)*T(n-1-j,k-j).