A144275 Lower triangular array called S2hat(-2) related to partition number array A144274.
1, 2, 1, 10, 2, 1, 80, 14, 2, 1, 880, 100, 14, 2, 1, 12320, 1140, 108, 14, 2, 1, 209440, 14880, 1180, 108, 14, 2, 1, 4188800, 249280, 15400, 1196, 108, 14, 2, 1, 96342400, 4801280, 255400, 15480, 1196, 108, 14, 2, 1, 2504902400, 108574400, 4888960, 256440, 15512
Offset: 1
Examples
Triangle begins: [1]; [2,1]; [10,2,1]; [80,14,2,1]; [880,100,14,2,1]; ...
Links
- Wolfdieter Lang, First 10 rows of the array and more.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,m) = Sum_{q=1..p(n,m)} (Product_{j=1..n} |S2(-2;j,1)|^e(n,m,q,j)) if n>=m>=1, else 0. Here p(n,m) = A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-2,n,1)|= A004747(n,1) = A008544(n-1) = (3*n-4)(!^3) (3-factorials) for n>=2 and 1 if n=1.
Comments