cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144285 Lower triangular array called S2hat(-4) related to partition number array A144284.

Original entry on oeis.org

1, 4, 1, 36, 4, 1, 504, 52, 4, 1, 9576, 648, 52, 4, 1, 229824, 12888, 712, 52, 4, 1, 6664896, 286272, 13464, 712, 52, 4, 1, 226606464, 8182944, 299520, 13720, 712, 52, 4, 1, 8837652096, 266366016, 8455392, 301824, 13720, 712, 52, 4, 1, 388856692224, 10191545280, 273091392
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M32khat(-4)= A144284 entries with the same parts number m are summed one obtains this triangle of numbers S2hat(-4). In the same way the Stirling2 triangle A008277 is obtained from the partition array M_3 = A036040.
The first three columns are A008546, A144339, A144340.

Examples

			[1];[4,1];[36,4,1];[504,52,4,1];[9576,648,52,4,1];...
		

Crossrefs

Row sums A144286.
A144280 (S2hat(-3)), A144342 (S2hat(-5)).

Formula

a(n,m)=sum(product(|S2(-4;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S2(-4,n,1)|= A011801(n,1) = A008546(n-1) = (5*n-6)(!^5) (5-factorials) for n>=2 and 1 if n=1.