A144287 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) = Fibonacci rabbit sequence number n coded in base k.
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 22, 5, 1, 5, 17, 93, 181, 8, 1, 6, 26, 276, 2521, 5814, 13, 1, 7, 37, 655, 17681, 612696, 1488565, 21, 1, 8, 50, 1338, 81901, 18105620, 4019900977, 12194330294, 34, 1, 9, 65, 2457, 289045, 255941280, 1186569930001, 6409020585966267, 25573364166211253, 55
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, ... 2, 5, 10, 17, 26, ... 3, 22, 93, 276, 655, ... 5, 181, 2521, 17681, 81901, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..16, flattened
- H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.
Crossrefs
Programs
-
Maple
f:= proc(n,b) option remember; `if`(n<2, [n,n], [f(n-1, b)[1]* b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]]) end: A:= (n,k)-> f(n,k)[1]: seq(seq(A(n, 1+d-n), n=1..d), d=1..11);
-
Mathematica
f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; t[n_, k_] := f[n, k][[1]]; Flatten[ Table[t[n, 1+d-n], {d, 1, 11}, {n, 1, d}]] (* Jean-François Alcover, translated from Maple, Dec 09 2011 *)
Formula
See program.